update tf-GDAS
This commit is contained in:
		@@ -11,7 +11,7 @@ OPS = {
 | 
			
		||||
  'nor_conv_1x1': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 1, stride, affine),
 | 
			
		||||
  'nor_conv_3x3': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 3, stride, affine),
 | 
			
		||||
  'nor_conv_5x5': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 5, stride, affine),
 | 
			
		||||
  'skip_connect': lambda C_in, C_out, stride, affine: Identity(C_in, C_out, stride)
 | 
			
		||||
  'skip_connect': lambda C_in, C_out, stride, affine: Identity(C_in, C_out, stride) if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine)
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
NAS_BENCH_201         = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3']
 | 
			
		||||
@@ -87,6 +87,36 @@ class ReLUConvBN(tf.keras.layers.Layer):
 | 
			
		||||
    return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class FactorizedReduce(tf.keras.layers.Layer):
 | 
			
		||||
  def __init__(self, C_in, C_out, stride, affine):
 | 
			
		||||
    assert output_filters % 2 == 0, ('Need even number of filters when using this factorized reduction.')
 | 
			
		||||
    self.stride == stride
 | 
			
		||||
    self.relu   = tf.keras.activations.relu
 | 
			
		||||
    if stride == 1:
 | 
			
		||||
      self.layer = tf.keras.Sequential([
 | 
			
		||||
                          tf.keras.layers.Conv2D(C_out, 1, strides, padding='same', use_bias=False),
 | 
			
		||||
                          tf.keras.layers.BatchNormalization(center=affine, scale=affine)])
 | 
			
		||||
    elif stride == 2:
 | 
			
		||||
      stride_spec = [1, stride, stride, 1] # data_format == 'NHWC'
 | 
			
		||||
      self.layer1 = tf.keras.layers.Conv2D(C_out//2, 1, strides, padding='same', use_bias=False)
 | 
			
		||||
      self.layer2 = tf.keras.layers.Conv2D(C_out//2, 1, strides, padding='same', use_bias=False)
 | 
			
		||||
      self.bn     = tf.keras.layers.BatchNormalization(center=affine, scale=affine)
 | 
			
		||||
    else:
 | 
			
		||||
      raise ValueError('invalid stride={:}'.format(stride))
 | 
			
		||||
 | 
			
		||||
  def call(self, inputs, training):
 | 
			
		||||
    x = self.relu(inputs)
 | 
			
		||||
    if self.stride == 1:
 | 
			
		||||
      return self.layer(x, training)
 | 
			
		||||
    else:
 | 
			
		||||
      path1 = x
 | 
			
		||||
      path2 = tf.pad(x, [[0, 0], [0, 1], [0, 1], [0, 0]])[:, 1:, 1:, :] # data_format == 'NHWC'
 | 
			
		||||
      x1 = self.layer1(path1)
 | 
			
		||||
      x2 = self.layer2(path2)
 | 
			
		||||
      final_path = tf.concat(values=[x1, x2], axis=3)
 | 
			
		||||
      return self.bn(final_path)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class ResNetBasicblock(tf.keras.layers.Layer):
 | 
			
		||||
 | 
			
		||||
  def __init__(self, inplanes, planes, stride, affine=True):
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user