################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # ################################################## import os, sys, time, torch, random, argparse from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True from copy import deepcopy from pathlib import Path lib_dir = (Path(__file__).parent / '..' / 'lib').resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from config_utils import load_config from procedures import save_checkpoint, copy_checkpoint from procedures import get_machine_info from datasets import get_datasets from log_utils import Logger, AverageMeter, time_string, convert_secs2time from models import CellStructure, CellArchitectures, get_search_spaces from AA_functions import evaluate_for_seed def evaluate_all_datasets(arch, datasets, xpaths, splits, seed, arch_config, workers, logger): machine_info, arch_config = get_machine_info(), deepcopy(arch_config) all_infos = {'info': machine_info} all_dataset_keys = [] # look all the datasets for dataset, xpath, split in zip(datasets, xpaths, splits): # train valid data train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) # load the configurature if dataset == 'cifar10' or dataset == 'cifar100': config_path = 'configs/nas-benchmark/CIFAR.config' split_info = load_config('configs/nas-benchmark/cifar-split.txt', None, None) elif dataset.startswith('ImageNet16'): config_path = 'configs/nas-benchmark/ImageNet-16.config' split_info = load_config('configs/nas-benchmark/{:}-split.txt'.format(dataset), None, None) else: raise ValueError('invalid dataset : {:}'.format(dataset)) config = load_config(config_path, \ {'class_num': class_num, 'xshape' : xshape}, \ logger) # check whether use splited validation set if bool(split): assert len(train_data) == len(split_info.train) + len(split_info.valid), 'invalid length : {:} vs {:} + {:}'.format(len(train_data), len(split_info.train), len(split_info.valid)) train_data_v2 = deepcopy(train_data) train_data_v2.transform = valid_data.transform valid_data = train_data_v2 # data loader train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), num_workers=workers, pin_memory=True) valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), num_workers=workers, pin_memory=True) else: # data loader train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, shuffle=True , num_workers=workers, pin_memory=True) valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True) dataset_key = '{:}'.format(dataset) if bool(split): dataset_key = dataset_key + '-valid' logger.log('Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size)) logger.log('Evaluate ||||||| {:10s} ||||||| Config={:}'.format(dataset_key, config)) results = evaluate_for_seed(arch_config, config, arch, train_loader, valid_loader, seed, logger) all_infos[dataset_key] = results all_dataset_keys.append( dataset_key ) all_infos['all_dataset_keys'] = all_dataset_keys return all_infos def main(save_dir, workers, datasets, xpaths, splits, srange, arch_index, seeds, cover_mode, meta_info, arch_config): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True #torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = True torch.set_num_threads( workers ) assert len(srange) == 2 and 0 <= srange[0] <= srange[1], 'invalid srange : {:}'.format(srange) sub_dir = Path(save_dir) / '{:06d}-{:06d}-C{:}-N{:}'.format(srange[0], srange[1], arch_config['channel'], arch_config['num_cells']) logger = Logger(str(sub_dir), 0, False) all_archs = meta_info['archs'] assert srange[1] < meta_info['total'], 'invalid range : {:}-{:} vs. {:}'.format(srange[0], srange[1], meta_info['total']) assert arch_index == -1 or srange[0] <= arch_index <= srange[1], 'invalid range : {:} vs. {:} vs. {:}'.format(srange[0], arch_index, srange[1]) if arch_index == -1: to_evaluate_indexes = list(range(srange[0], srange[1]+1)) else: to_evaluate_indexes = [arch_index] logger.log('xargs : seeds = {:}'.format(seeds)) logger.log('xargs : arch_index = {:}'.format(arch_index)) logger.log('xargs : cover_mode = {:}'.format(cover_mode)) logger.log('-'*100) logger.log('Start evaluating range =: {:06d} vs. {:06d} vs. {:06d} / {:06d} with cover-mode={:}'.format(srange[0], arch_index, srange[1], meta_info['total'], cover_mode)) for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): logger.log('--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}'.format(i, len(datasets), dataset, xpath, split)) logger.log('--->>> architecture config : {:}'.format(arch_config)) start_time, epoch_time = time.time(), AverageMeter() for i, index in enumerate(to_evaluate_indexes): arch = all_archs[index] logger.log('\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th architecture [seeds={:}] {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seeds, '-'*15)) #logger.log('{:} {:} {:}'.format('-'*15, arch.tostr(), '-'*15)) logger.log('{:} {:} {:}'.format('-'*15, arch, '-'*15)) # test this arch on different datasets with different seeds has_continue = False for seed in seeds: to_save_name = sub_dir / 'arch-{:06d}-seed-{:04d}.pth'.format(index, seed) if to_save_name.exists(): if cover_mode: logger.log('Find existing file : {:}, remove it before evaluation'.format(to_save_name)) os.remove(str(to_save_name)) else : logger.log('Find existing file : {:}, skip this evaluation'.format(to_save_name)) has_continue = True continue results = evaluate_all_datasets(CellStructure.str2structure(arch), \ datasets, xpaths, splits, seed, \ arch_config, workers, logger) torch.save(results, to_save_name) logger.log('{:} --evaluate-- {:06d}/{:06d} ({:06d}/{:06d})-th seed={:} done, save into {:}'.format('-'*15, i, len(to_evaluate_indexes), index, meta_info['total'], seed, to_save_name)) # measure elapsed time if not has_continue: epoch_time.update(time.time() - start_time) start_time = time.time() need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes)-i-1), True) ) logger.log('This arch costs : {:}'.format( convert_secs2time(epoch_time.val, True) )) logger.log('{:}'.format('*'*100)) logger.log('{:} {:74s} {:}'.format('*'*10, '{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}'.format(i, len(to_evaluate_indexes), index, meta_info['total'], need_time), '*'*10)) logger.log('{:}'.format('*'*100)) logger.close() def train_single_model(save_dir, workers, datasets, xpaths, splits, seeds, model_str, arch_config): assert torch.cuda.is_available(), 'CUDA is not available.' torch.backends.cudnn.enabled = True torch.backends.cudnn.deterministic = True #torch.backends.cudnn.benchmark = True torch.set_num_threads( workers ) save_dir = Path(save_dir) / 'specifics' / '{:}-{:}-{:}'.format(model_str, arch_config['channel'], arch_config['num_cells']) logger = Logger(str(save_dir), 0, False) if model_str in CellArchitectures: arch = CellArchitectures[model_str] logger.log('The model string is found in pre-defined architecture dict : {:}'.format(model_str)) else: try: arch = CellStructure.str2structure(model_str) except: raise ValueError('Invalid model string : {:}. It can not be found or parsed.'.format(model_str)) assert arch.check_valid_op(get_search_spaces('cell', 'full')), '{:} has the invalid op.'.format(arch) logger.log('Start train-evaluate {:}'.format(arch.tostr())) logger.log('arch_config : {:}'.format(arch_config)) start_time, seed_time = time.time(), AverageMeter() for _is, seed in enumerate(seeds): logger.log('\nThe {:02d}/{:02d}-th seed is {:} ----------------------<.>----------------------'.format(_is, len(seeds), seed)) to_save_name = save_dir / 'seed-{:04d}.pth'.format(seed) if to_save_name.exists(): logger.log('Find the existing file {:}, directly load!'.format(to_save_name)) checkpoint = torch.load(to_save_name) else: logger.log('Does not find the existing file {:}, train and evaluate!'.format(to_save_name)) checkpoint = evaluate_all_datasets(arch, datasets, xpaths, splits, seed, arch_config, workers, logger) torch.save(checkpoint, to_save_name) # log information logger.log('{:}'.format(checkpoint['info'])) all_dataset_keys = checkpoint['all_dataset_keys'] for dataset_key in all_dataset_keys: logger.log('\n{:} dataset : {:} {:}'.format('-'*15, dataset_key, '-'*15)) dataset_info = checkpoint[dataset_key] #logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] )) logger.log('Flops = {:} MB, Params = {:} MB'.format(dataset_info['flop'], dataset_info['param'])) logger.log('config : {:}'.format(dataset_info['config'])) logger.log('Training State (finish) = {:}'.format(dataset_info['finish-train'])) last_epoch = dataset_info['total_epoch'] - 1 train_acc1es, train_acc5es = dataset_info['train_acc1es'], dataset_info['train_acc5es'] valid_acc1es, valid_acc5es = dataset_info['valid_acc1es'], dataset_info['valid_acc5es'] logger.log('Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%'.format(train_acc1es[last_epoch], train_acc5es[last_epoch], 100-train_acc1es[last_epoch], valid_acc1es[last_epoch], valid_acc5es[last_epoch], 100-valid_acc1es[last_epoch])) # measure elapsed time seed_time.update(time.time() - start_time) start_time = time.time() need_time = 'Time Left: {:}'.format( convert_secs2time(seed_time.avg * (len(seeds)-_is-1), True) ) logger.log('\n<<<***>>> The {:02d}/{:02d}-th seed is {:} other procedures need {:}'.format(_is, len(seeds), seed, need_time)) logger.close() def generate_meta_info(save_dir, max_node, divide=40): aa_nas_bench_ss = get_search_spaces('cell', 'aa-nas') archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) print ('There are {:} archs vs {:}.'.format(len(archs), len(aa_nas_bench_ss) ** ((max_node-1)*max_node/2))) random.seed( 88 ) # please do not change this line for reproducibility random.shuffle( archs ) # to test fixed-random shuffle #print ('arch [0] : {:}\n---->>>> {:}'.format( archs[0], archs[0].tostr() )) #print ('arch [9] : {:}\n---->>>> {:}'.format( archs[9], archs[9].tostr() )) assert archs[0 ].tostr() == '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'please check the 0-th architecture : {:}'.format(archs[0]) assert archs[9 ].tostr() == '|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|', 'please check the 9-th architecture : {:}'.format(archs[9]) assert archs[123].tostr() == '|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|', 'please check the 123-th architecture : {:}'.format(archs[123]) total_arch = len(archs) num = 50000 indexes_5W = list(range(num)) random.seed( 1021 ) random.shuffle( indexes_5W ) train_split = sorted( list(set(indexes_5W[:num//2])) ) valid_split = sorted( list(set(indexes_5W[num//2:])) ) assert len(train_split) + len(valid_split) == num assert train_split[0] == 0 and train_split[10] == 26 and train_split[111] == 203 and valid_split[0] == 1 and valid_split[10] == 18 and valid_split[111] == 242, '{:} {:} {:} - {:} {:} {:}'.format(train_split[0], train_split[10], train_split[111], valid_split[0], valid_split[10], valid_split[111]) splits = {num: {'train': train_split, 'valid': valid_split} } info = {'archs' : [x.tostr() for x in archs], 'total' : total_arch, 'max_node' : max_node, 'splits': splits} save_dir = Path(save_dir) save_dir.mkdir(parents=True, exist_ok=True) save_name = save_dir / 'meta-node-{:}.pth'.format(max_node) assert not save_name.exists(), '{:} already exist'.format(save_name) torch.save(info, save_name) print ('save the meta file into {:}'.format(save_name)) script_name = save_dir / 'meta-node-{:}.opt-script.txt'.format(max_node) with open(str(script_name), 'w') as cfile: gaps = total_arch // divide for start in range(0, total_arch, gaps): xend = min(start+gaps, total_arch) cfile.write('bash ./scripts-search/AA-NAS-train-archs.sh {:5d} {:5d} -1 \'777 888 999\'\n'.format(start, xend-1)) print ('save the training script into {:}'.format(script_name)) script_name = save_dir / 'meta-node-{:}.cal-script.txt'.format(max_node) macro = 'OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0' with open(str(script_name), 'w') as cfile: gaps = total_arch // divide for start in range(0, total_arch, gaps): xend = min(start+gaps, total_arch) cfile.write('{:} python exps/AA-NAS-statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n'.format(macro, start, xend-1)) print ('save the post-processing script into {:}'.format(script_name)) if __name__ == '__main__': #mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()] parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--mode' , type=str, required=True, help='The script mode.') parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.') parser.add_argument('--max_node', type=int, help='The maximum node in a cell.') # use for train the model parser.add_argument('--workers', type=int, default=8, help='number of data loading workers (default: 2)') parser.add_argument('--srange' , type=int, nargs='+', help='The range of models to be evaluated') parser.add_argument('--arch_index', type=int, default=-1, help='The architecture index to be evaluated (cover mode).') parser.add_argument('--datasets', type=str, nargs='+', help='The applied datasets.') parser.add_argument('--xpaths', type=str, nargs='+', help='The root path for this dataset.') parser.add_argument('--splits', type=int, nargs='+', help='The root path for this dataset.') parser.add_argument('--seeds' , type=int, nargs='+', help='The range of models to be evaluated') parser.add_argument('--channel', type=int, help='The number of channels.') parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.') args = parser.parse_args() assert args.mode in ['meta', 'new', 'cover'] or args.mode.startswith('specific-'), 'invalid mode : {:}'.format(args.mode) if args.mode == 'meta': generate_meta_info(args.save_dir, args.max_node) elif args.mode.startswith('specific'): assert len(args.mode.split('-')) == 2, 'invalid mode : {:}'.format(args.mode) model_str = args.mode.split('-')[1] train_single_model(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, \ tuple(args.seeds), model_str, {'channel': args.channel, 'num_cells': args.num_cells}) else: meta_path = Path(args.save_dir) / 'meta-node-{:}.pth'.format(args.max_node) assert meta_path.exists(), '{:} does not exist.'.format(meta_path) meta_info = torch.load( meta_path ) # check whether args is ok assert len(args.srange) == 2 and args.srange[0] <= args.srange[1], 'invalid length of srange args: {:}'.format(args.srange) assert len(args.seeds) > 0, 'invalid length of seeds args: {:}'.format(args.seeds) assert len(args.datasets) == len(args.xpaths) == len(args.splits), 'invalid infos : {:} vs {:} vs {:}'.format(len(args.datasets), len(args.xpaths), len(args.splits)) assert args.workers > 0, 'invalid number of workers : {:}'.format(args.workers) main(args.save_dir, args.workers, args.datasets, args.xpaths, args.splits, \ tuple(args.srange), args.arch_index, tuple(args.seeds), \ args.mode == 'cover', meta_info, \ {'channel': args.channel, 'num_cells': args.num_cells})