##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.06 # ##################################################### # Vision Transformer: arxiv.org/pdf/2010.11929.pdf # ##################################################### import copy, math from functools import partial from typing import Optional, Text, List import torch import torch.nn as nn import torch.nn.functional as F from xautodl import spaces from xautodl import xlayers from xautodl.xlayers import weight_init class SuperQuaT(xlayers.SuperModule): """The super transformer for transformer.""" def __init__( self, image_size, patch_size, num_classes, dim, depth, heads, mlp_multiplier=4, channels=3, dropout=0.0, att_dropout=0.0, ): super(SuperQuaT, self).__init__() image_height, image_width = pair(image_size) patch_height, patch_width = pair(patch_size) if image_height % patch_height != 0 or image_width % patch_width != 0: raise ValueError("Image dimensions must be divisible by the patch size.") num_patches = (image_height // patch_height) * (image_width // patch_width) patch_dim = channels * patch_height * patch_width self.to_patch_embedding = xlayers.SuperSequential( xlayers.SuperReArrange( "b c (h p1) (w p2) -> b (h w) (p1 p2 c)", p1=patch_height, p2=patch_width, ), xlayers.SuperLinear(patch_dim, dim), ) self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) self.dropout = nn.Dropout(dropout) # build the transformer encode layers layers = [] for ilayer in range(depth): layers.append( xlayers.SuperTransformerEncoderLayer( dim, heads, False, mlp_multiplier, dropout=dropout, att_dropout=att_dropout, ) ) self.backbone = xlayers.SuperSequential(*layers) self.cls_head = xlayers.SuperSequential( xlayers.SuperLayerNorm1D(dim), xlayers.SuperLinear(dim, num_classes) ) weight_init.trunc_normal_(self.cls_token, std=0.02) self.apply(_init_weights) @property def abstract_search_space(self): raise NotImplementedError def apply_candidate(self, abstract_child: spaces.VirtualNode): super(SuperQuaT, self).apply_candidate(abstract_child) raise NotImplementedError def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: raise NotImplementedError def forward_raw(self, input: torch.Tensor) -> torch.Tensor: tensors = self.to_patch_embedding(input) batch, seq, _ = tensors.shape cls_tokens = self.cls_token.expand(batch, -1, -1) feats = torch.cat((cls_tokens, tensors), dim=1) feats = feats + self.pos_embedding[:, : seq + 1, :] feats = self.dropout(feats) feats = self.backbone(feats) x = feats[:, 0] # the features for cls-token return self.cls_head(x) def get_transformer(config): if isinstance(config, str) and config.lower() in name2config: config = name2config[config.lower()] if not isinstance(config, dict): raise ValueError("Invalid Configuration: {:}".format(config)) model_type = config.get("type", "vit").lower() if model_type == "vit": model = SuperQuaT( image_size=config.get("image_size"), patch_size=config.get("patch_size"), num_classes=config.get("num_classes"), dim=config.get("dim"), depth=config.get("depth"), heads=config.get("heads"), dropout=config.get("dropout"), att_dropout=config.get("att_dropout"), ) else: raise ValueError("Unknown model type: {:}".format(model_type)) return model