##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # ##################################################### # python exps/LFNA/lfna-fix-init.py --env_version v1 --hidden_dim 16 ##################################################### import sys, time, copy, torch, random, argparse from tqdm import tqdm from copy import deepcopy from pathlib import Path lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint from log_utils import time_string from log_utils import AverageMeter, convert_secs2time from utils import split_str2indexes from procedures.advanced_main import basic_train_fn, basic_eval_fn from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric from datasets.synthetic_core import get_synthetic_env from models.xcore import get_model from xlayers import super_core from lfna_utils import lfna_setup, train_model, TimeData class LFNAmlp: """A LFNA meta-model that uses the MLP as delta-net.""" def __init__(self, obs_dim, hidden_sizes, act_name, criterion): self.delta_net = super_core.SuperSequential( super_core.SuperLinear(obs_dim, hidden_sizes[0]), super_core.super_name2activation[act_name](), super_core.SuperLinear(hidden_sizes[0], hidden_sizes[1]), super_core.super_name2activation[act_name](), super_core.SuperLinear(hidden_sizes[1], 1), ) self.meta_optimizer = torch.optim.Adam( self.delta_net.parameters(), lr=0.001, amsgrad=True ) self.criterion = criterion def adapt(self, model, seq_datasets): delta_inputs = [] container = model.get_w_container() for iseq, dataset in enumerate(seq_datasets): y_hat = model.forward_with_container(dataset.x, container) loss = self.criterion(y_hat, dataset.y) gradients = torch.autograd.grad(loss, container.parameters()) with torch.no_grad(): flatten_g = container.flatten(gradients) delta_inputs.append(flatten_g) flatten_w = container.no_grad_clone().flatten() delta_inputs.append(flatten_w) delta_inputs = torch.stack(delta_inputs, dim=-1) delta = self.delta_net(delta_inputs) delta = torch.clamp(delta, -0.8, 0.8) unflatten_delta = container.unflatten(delta) future_container = container.no_grad_clone().additive(unflatten_delta) return future_container def step(self): torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0) self.meta_optimizer.step() def zero_grad(self): self.meta_optimizer.zero_grad() self.delta_net.zero_grad() def state_dict(self): return dict( delta_net=self.delta_net.state_dict(), meta_optimizer=self.meta_optimizer.state_dict(), ) def main(args): logger, env_info, model_kwargs = lfna_setup(args) dynamic_env = env_info["dynamic_env"] model = get_model(dict(model_type="simple_mlp"), **model_kwargs) total_time = env_info["total"] for i in range(total_time): for xkey in ("timestamp", "x", "y"): nkey = "{:}-{:}".format(i, xkey) assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys())) train_time_bar = total_time // 2 network = get_model(dict(model_type="simple_mlp"), **model_kwargs) criterion = torch.nn.MSELoss() logger.log("There are {:} weights.".format(network.get_w_container().numel())) adaptor = LFNAmlp(1 + args.meta_seq, (20, 20), "leaky_relu", criterion) # pre-train the model init_dataset = TimeData(0, env_info["0-x"], env_info["0-y"]) init_loss = train_model(network, init_dataset, args.init_lr, args.epochs) logger.log("The pre-training loss is {:.4f}".format(init_loss)) # LFNA meta-training meta_loss_meter = AverageMeter() per_epoch_time, start_time = AverageMeter(), time.time() for iepoch in range(args.epochs): need_time = "Time Left: {:}".format( convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) ) logger.log( "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) + need_time ) adaptor.zero_grad() batch_indexes, meta_losses = [], [] for ibatch in range(args.meta_batch): sampled_timestamp = random.random() * train_time_bar batch_indexes.append("{:.3f}".format(sampled_timestamp)) seq_datasets = [] for iseq in range(args.meta_seq + 1): cur_time = sampled_timestamp + iseq * dynamic_env.timestamp_interval cur_time, (x, y) = dynamic_env(cur_time) seq_datasets.append(TimeData(cur_time, x, y)) history_datasets, future_dataset = seq_datasets[:-1], seq_datasets[-1] future_container = adaptor.adapt(network, history_datasets) future_y_hat = network.forward_with_container( future_dataset.x, future_container ) future_loss = adaptor.criterion(future_y_hat, future_dataset.y) meta_losses.append(future_loss) meta_loss = torch.stack(meta_losses).mean() meta_loss.backward() adaptor.step() meta_loss_meter.update(meta_loss.item()) logger.log( "meta-loss: {:.4f} ({:.4f}) batch: {:}".format( meta_loss_meter.avg, meta_loss_meter.val, ",".join(batch_indexes[:5]) ) ) if iepoch % 200 == 0: save_checkpoint( {"adaptor": adaptor.state_dict(), "iepoch": iepoch}, logger.path("model"), logger, ) per_epoch_time.update(time.time() - start_time) start_time = time.time() w_container_per_epoch = dict() for idx in range(1, env_info["total"]): future_time = env_info["{:}-timestamp".format(idx)] future_x = env_info["{:}-x".format(idx)] future_y = env_info["{:}-y".format(idx)] seq_datasets = [] for iseq in range(1, args.meta_seq + 1): cur_time = future_time - iseq * dynamic_env.timestamp_interval cur_time, (x, y) = dynamic_env(cur_time) seq_datasets.append(TimeData(cur_time, x, y)) seq_datasets.reverse() future_container = adaptor.adapt(network, seq_datasets) w_container_per_epoch[idx] = future_container.no_grad_clone() with torch.no_grad(): future_y_hat = network.forward_with_container( future_x, w_container_per_epoch[idx] ) future_loss = adaptor.criterion(future_y_hat, future_y) logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())) save_checkpoint( {"w_container_per_epoch": w_container_per_epoch}, logger.path(None) / "final-ckp.pth", logger, ) logger.log("-" * 200 + "\n") logger.close() if __name__ == "__main__": parser = argparse.ArgumentParser("Use the data in the past.") parser.add_argument( "--save_dir", type=str, default="./outputs/lfna-synthetic/lfna-fix-init", help="The checkpoint directory.", ) parser.add_argument( "--env_version", type=str, required=True, help="The synthetic enviornment version.", ) parser.add_argument( "--hidden_dim", type=int, required=True, help="The hidden dimension.", ) ##### parser.add_argument( "--init_lr", type=float, default=0.1, help="The initial learning rate for the optimizer (default is Adam)", ) parser.add_argument( "--meta_batch", type=int, default=32, help="The batch size for the meta-model", ) parser.add_argument( "--meta_seq", type=int, default=10, help="The length of the sequence for meta-model.", ) parser.add_argument( "--epochs", type=int, default=1000, help="The total number of epochs.", ) # Random Seed parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) assert args.save_dir is not None, "The save dir argument can not be None" args.save_dir = "{:}-{:}-d{:}".format( args.save_dir, args.env_version, args.hidden_dim ) main(args)