# This file is for experimental usage import torch, random import numpy as np from copy import deepcopy import torch.nn as nn # from utils import obtain_accuracy from models import CellStructure from log_utils import time_string def evaluate_one_shot(model, xloader, api, cal_mode, seed=111): print ('This is an old version of codes to use NAS-Bench-API, and should be modified to align with the new version. Please contact me for more details if you use this function.') weights = deepcopy(model.state_dict()) model.train(cal_mode) with torch.no_grad(): logits = nn.functional.log_softmax(model.arch_parameters, dim=-1) archs = CellStructure.gen_all(model.op_names, model.max_nodes, False) probs, accuracies, gt_accs_10_valid, gt_accs_10_test = [], [], [], [] loader_iter = iter(xloader) random.seed(seed) random.shuffle(archs) for idx, arch in enumerate(archs): arch_index = api.query_index_by_arch( arch ) metrics = api.get_more_info(arch_index, 'cifar10-valid', None, False, False) gt_accs_10_valid.append( metrics['valid-accuracy'] ) metrics = api.get_more_info(arch_index, 'cifar10', None, False, False) gt_accs_10_test.append( metrics['test-accuracy'] ) select_logits = [] for i, node_info in enumerate(arch.nodes): for op, xin in node_info: node_str = '{:}<-{:}'.format(i+1, xin) op_index = model.op_names.index(op) select_logits.append( logits[model.edge2index[node_str], op_index] ) cur_prob = sum(select_logits).item() probs.append( cur_prob ) cor_prob_valid = np.corrcoef(probs, gt_accs_10_valid)[0,1] cor_prob_test = np.corrcoef(probs, gt_accs_10_test )[0,1] print ('{:} correlation for probabilities : {:.6f} on CIFAR-10 validation and {:.6f} on CIFAR-10 test'.format(time_string(), cor_prob_valid, cor_prob_test)) for idx, arch in enumerate(archs): model.set_cal_mode('dynamic', arch) try: inputs, targets = next(loader_iter) except: loader_iter = iter(xloader) inputs, targets = next(loader_iter) _, logits = model(inputs.cuda()) _, preds = torch.max(logits, dim=-1) correct = (preds == targets.cuda() ).float() accuracies.append( correct.mean().item() ) if idx != 0 and (idx % 500 == 0 or idx + 1 == len(archs)): cor_accs_valid = np.corrcoef(accuracies, gt_accs_10_valid[:idx+1])[0,1] cor_accs_test = np.corrcoef(accuracies, gt_accs_10_test [:idx+1])[0,1] print ('{:} {:05d}/{:05d} mode={:5s}, correlation : accs={:.5f} for CIFAR-10 valid, {:.5f} for CIFAR-10 test.'.format(time_string(), idx, len(archs), 'Train' if cal_mode else 'Eval', cor_accs_valid, cor_accs_test)) model.load_state_dict(weights) return archs, probs, accuracies