##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # ##################################################### # Refer to: # - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.ipynb # - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.py # python exps/trading/workflow_test.py ##################################################### import sys, site from pathlib import Path lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) import qlib import pandas as pd from qlib.config import REG_CN from qlib.contrib.model.gbdt import LGBModel from qlib.contrib.data.handler import Alpha158 from qlib.contrib.strategy.strategy import TopkDropoutStrategy from qlib.contrib.evaluate import ( backtest as normal_backtest, risk_analysis, ) from qlib.utils import exists_qlib_data, init_instance_by_config from qlib.workflow import R from qlib.workflow.record_temp import SignalRecord, PortAnaRecord from qlib.utils import flatten_dict # use default data # NOTE: need to download data from remote: python scripts/get_data.py qlib_data_cn --target_dir ~/.qlib/qlib_data/cn_data provider_uri = "~/.qlib/qlib_data/cn_data" # target_dir if not exists_qlib_data(provider_uri): print(f"Qlib data is not found in {provider_uri}") sys.path.append(str(scripts_dir)) from get_data import GetData GetData().qlib_data(target_dir=provider_uri, region=REG_CN) qlib.init(provider_uri=provider_uri, region=REG_CN) market = "csi300" benchmark = "SH000300" ################################### # train model ################################### data_handler_config = { "start_time": "2008-01-01", "end_time": "2020-08-01", "fit_start_time": "2008-01-01", "fit_end_time": "2014-12-31", "instruments": market, } task = { "model": { "class": "QuantTransformer", "module_path": "trade_models", "kwargs": { "loss": "mse", "GPU": "0", "metric": "loss", }, }, "dataset": { "class": "DatasetH", "module_path": "qlib.data.dataset", "kwargs": { "handler": { "class": "Alpha158", "module_path": "qlib.contrib.data.handler", "kwargs": data_handler_config, }, "segments": { "train": ("2008-01-01", "2014-12-31"), "valid": ("2015-01-01", "2016-12-31"), "test": ("2017-01-01", "2020-08-01"), }, }, }, } # model initiaiton model = init_instance_by_config(task["model"]) dataset = init_instance_by_config(task["dataset"]) # start exp to train model with R.start(experiment_name="train_model"): R.log_params(**flatten_dict(task)) model.fit(dataset) R.save_objects(trained_model=model) rid = R.get_recorder().id