##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # ##################################################### # python exps/LFNA/lfna-v1.py ##################################################### import sys, time, copy, torch, random, argparse from tqdm import tqdm from copy import deepcopy from pathlib import Path lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint from log_utils import time_string from log_utils import AverageMeter, convert_secs2time from utils import split_str2indexes from procedures.advanced_main import basic_train_fn, basic_eval_fn from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric from datasets.synthetic_core import get_synthetic_env from models.xcore import get_model from xlayers import super_core class LFNAmlp: """A LFNA meta-model that uses the MLP as delta-net.""" def __init__(self, obs_dim, hidden_sizes, act_name): self.delta_net = super_core.SuperSequential( super_core.SuperLinear(obs_dim, hidden_sizes[0]), super_core.super_name2activation[act_name](), super_core.SuperLinear(hidden_sizes[0], hidden_sizes[1]), super_core.super_name2activation[act_name](), super_core.SuperLinear(hidden_sizes[1], 1), ) self.meta_optimizer = torch.optim.Adam( self.delta_net.parameters(), lr=0.01, amsgrad=True ) def adapt(self, model, criterion, w_container, seq_datasets): w_container.requires_grad_(True) containers = [w_container] for idx, dataset in enumerate(seq_datasets): x, y = dataset.x, dataset.y y_hat = model.forward_with_container(x, containers[-1]) loss = criterion(y_hat, y) gradients = torch.autograd.grad(loss, containers[-1].tensors) with torch.no_grad(): flatten_w = containers[-1].flatten().view(-1, 1) flatten_g = containers[-1].flatten(gradients).view(-1, 1) input_statistics = torch.tensor([x.mean(), x.std()]).view(1, 2) input_statistics = input_statistics.expand(flatten_w.numel(), -1) delta_inputs = torch.cat((flatten_w, flatten_g, input_statistics), dim=-1) delta = self.delta_net(delta_inputs).view(-1) delta = torch.clamp(delta, -0.5, 0.5) unflatten_delta = containers[-1].unflatten(delta) future_container = containers[-1].no_grad_clone().additive(unflatten_delta) # future_container = containers[-1].additive(unflatten_delta) containers.append(future_container) # containers = containers[1:] meta_loss = [] temp_containers = [] for idx, dataset in enumerate(seq_datasets): if idx == 0: continue current_container = containers[idx] y_hat = model.forward_with_container(dataset.x, current_container) loss = criterion(y_hat, dataset.y) meta_loss.append(loss) temp_containers.append((dataset.timestamp, current_container, -loss.item())) meta_loss = sum(meta_loss) w_container.requires_grad_(False) # meta_loss.backward() # self.meta_optimizer.step() return meta_loss, temp_containers def step(self): torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0) self.meta_optimizer.step() def zero_grad(self): self.meta_optimizer.zero_grad() self.delta_net.zero_grad() class TimeData: def __init__(self, timestamp, xs, ys): self._timestamp = timestamp self._xs = xs self._ys = ys @property def x(self): return self._xs @property def y(self): return self._ys @property def timestamp(self): return self._timestamp class Population: """A population used to maintain models at different timestamps.""" def __init__(self): self._time2model = dict() self._time2score = dict() # higher is better def append(self, timestamp, model, score): if timestamp in self._time2model: if self._time2score[timestamp] > score: return self._time2model[timestamp] = model.no_grad_clone() self._time2score[timestamp] = score def query(self, timestamp): closet_timestamp = None for xtime, model in self._time2model.items(): if closet_timestamp is None or ( xtime < timestamp and timestamp - closet_timestamp >= timestamp - xtime ): closet_timestamp = xtime return self._time2model[closet_timestamp], closet_timestamp def debug_info(self, timestamps): xstrs = [] for timestamp in timestamps: if timestamp in self._time2score: xstrs.append( "{:04d}: {:.4f}".format(timestamp, self._time2score[timestamp]) ) return ", ".join(xstrs) def main(args): prepare_seed(args.rand_seed) logger = prepare_logger(args) cache_path = (logger.path(None) / ".." / "env-info.pth").resolve() if cache_path.exists(): env_info = torch.load(cache_path) else: env_info = dict() dynamic_env = get_synthetic_env() env_info["total"] = len(dynamic_env) for idx, (timestamp, (_allx, _ally)) in enumerate(tqdm(dynamic_env)): env_info["{:}-timestamp".format(idx)] = timestamp env_info["{:}-x".format(idx)] = _allx env_info["{:}-y".format(idx)] = _ally env_info["dynamic_env"] = dynamic_env torch.save(env_info, cache_path) total_time = env_info["total"] for i in range(total_time): for xkey in ("timestamp", "x", "y"): nkey = "{:}-{:}".format(i, xkey) assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys())) train_time_bar = total_time // 2 base_model = get_model( dict(model_type="simple_mlp"), act_cls="leaky_relu", norm_cls="identity", input_dim=1, output_dim=1, ) w_container = base_model.get_w_container() criterion = torch.nn.MSELoss() print("There are {:} weights.".format(w_container.numel())) adaptor = LFNAmlp(4, (50, 20), "leaky_relu") pool = Population() pool.append(0, w_container, -100) # LFNA meta-training per_epoch_time, start_time = AverageMeter(), time.time() for iepoch in range(args.epochs): need_time = "Time Left: {:}".format( convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True) ) logger.log( "[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs) + need_time ) adaptor.zero_grad() debug_timestamp = set() all_meta_losses = [] for ibatch in range(args.meta_batch): sampled_timestamp = random.randint(0, train_time_bar) query_w_container, query_timestamp = pool.query(sampled_timestamp) # def adapt(self, model, w_container, xs, ys): seq_datasets = [] # xs, ys = [], [] for it in range(sampled_timestamp, sampled_timestamp + args.max_seq): xs = env_info["{:}-x".format(it)] ys = env_info["{:}-y".format(it)] seq_datasets.append(TimeData(it, xs, ys)) temp_meta_loss, temp_containers = adaptor.adapt( base_model, criterion, query_w_container, seq_datasets ) all_meta_losses.append(temp_meta_loss) for temp_time, temp_container, temp_score in temp_containers: pool.append(temp_time, temp_container, temp_score) debug_timestamp.add(temp_time) meta_loss = torch.stack(all_meta_losses).mean() meta_loss.backward() adaptor.step() debug_str = pool.debug_info(debug_timestamp) logger.log("meta-loss: {:.4f}".format(meta_loss.item())) per_epoch_time.update(time.time() - start_time) start_time = time.time() logger.log("-" * 200 + "\n") logger.close() if __name__ == "__main__": parser = argparse.ArgumentParser("Use the data in the past.") parser.add_argument( "--save_dir", type=str, default="./outputs/lfna-synthetic/lfna-v1", help="The checkpoint directory.", ) parser.add_argument( "--init_lr", type=float, default=0.1, help="The initial learning rate for the optimizer (default is Adam)", ) parser.add_argument( "--meta_batch", type=int, default=5, help="The batch size for the meta-model", ) parser.add_argument( "--epochs", type=int, default=1000, help="The total number of epochs.", ) parser.add_argument( "--max_seq", type=int, default=5, help="The maximum length of the sequence.", ) parser.add_argument( "--workers", type=int, default=4, help="The number of data loading workers (default: 4)", ) # Random Seed parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) assert args.save_dir is not None, "The save dir argument can not be None" main(args)