import math from .synthetic_utils import TimeStamp from .synthetic_env import SyntheticDEnv from .math_core import LinearFunc from .math_core import DynamicLinearFunc from .math_core import DynamicQuadraticFunc from .math_core import ConstantFunc, ComposedSinFunc as SinFunc from .math_core import GaussianDGenerator __all__ = ["TimeStamp", "SyntheticDEnv", "get_synthetic_env"] def get_synthetic_env(total_timestamp=1600, num_per_task=1000, mode=None, version="v1"): max_time = math.pi * 10 if version == "v1": mean_generator = ConstantFunc(0) std_generator = ConstantFunc(1) data_generator = GaussianDGenerator( [mean_generator], [[std_generator]], (-2, 2) ) time_generator = TimeStamp( min_timestamp=0, max_timestamp=max_time, num=total_timestamp, mode=mode ) oracle_map = DynamicLinearFunc( params={ 0: SinFunc(params={0: 2.0, 1: 1.0, 2: 2.2}), # 2 sin(t) + 2.2 1: SinFunc(params={0: 1.5, 1: 0.6, 2: 1.8}), # 1.5 sin(0.6t) + 1.8 } ) dynamic_env = SyntheticDEnv( data_generator, oracle_map, time_generator, num_per_task ) elif version == "v2": mean_generator = ConstantFunc(0) std_generator = ConstantFunc(1) data_generator = GaussianDGenerator( [mean_generator], [[std_generator]], (-2, 2) ) time_generator = TimeStamp( min_timestamp=0, max_timestamp=max_time, num=total_timestamp, mode=mode ) oracle_map = DynamicQuadraticFunc( params={ 0: LinearFunc(params={0: 0.1, 1: 0}), # 0.1 * t 1: SinFunc(params={0: 1, 1: 1, 2: 0}), # sin(t) 2: ConstantFunc(0), } ) dynamic_env = SyntheticDEnv( data_generator, oracle_map, time_generator, num_per_task ) else: raise ValueError("Unknown version: {:}".format(version)) return dynamic_env