<p align="center"> <img src="https://xuanyidong.com/resources/images/AutoDL-log.png" width="400"/> </p> --------- [](LICENSE.md) 自动深度学习库 (AutoDL-Projects) 是一个开源的,轻量级的,功能强大的项目。 台项目目前实现了多种网络结构搜索(NAS)和超参数优化(HPO)算法。 **谁应该考虑使用AutoDL-Projects** - 想尝试不同AutoDL算法的初学者 - 想调研AutoDL在特定问题上的有效性的工程师 - 想轻松实现和实验新AutoDL算法的研究员 **为什么我们要用AutoDL-Projects** - 最简化的python依赖库 - 所有算法都在一个代码库下 - 积极地维护 ## AutoDL-Projects 能力简述 目前,该项目提供了下列算法和以及对应的运行脚本。请点击每个算法对应的链接看他们的细节描述。 <table> <tbody> <tr align="center" valign="bottom"> <th>Type</th> <th>ABBRV</th> <th>Algorithms</th> <th>Description</th> </tr> <tr> <!-- (1-st row) --> <td rowspan="6" align="center" valign="middle" halign="middle"> NAS </td> <td align="center" valign="middle"> TAS </td> <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1905.09717">Network Pruning via Transformable Architecture Search</a> </td> <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NeurIPS-2019-TAS.md">NeurIPS-2019-TAS.md</a> </td> </tr> <tr> <!-- (2-nd row) --> <td align="center" valign="middle"> DARTS </td> <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1806.09055">DARTS: Differentiable Architecture Search</a> </td> <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/ICLR-2019-DARTS.md">ICLR-2019-DARTS.md</a> </td> </tr> <tr> <!-- (3-nd row) --> <td align="center" valign="middle"> GDAS </td> <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1910.04465">Searching for A Robust Neural Architecture in Four GPU Hours</a> </td> <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/CVPR-2019-GDAS.md">CVPR-2019-GDAS.md</a> </td> </tr> <tr> <!-- (4-rd row) --> <td align="center" valign="middle"> SETN </td> <td align="center" valign="middle"> <a href="https://arxiv.org/abs/1910.05733">One-Shot Neural Architecture Search via Self-Evaluated Template Network</a> </td> <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/ICCV-2019-SETN.md">ICCV-2019-SETN.md</a> </td> </tr> <tr> <!-- (5-th row) --> <td align="center" valign="middle"> NAS-Bench-201 </td> <td align="center" valign="middle"> <a href="https://openreview.net/forum?id=HJxyZkBKDr"> NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search</a> </td> <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td> </tr> <tr> <!-- (6-th row) --> <td align="center" valign="middle"> ... </td> <td align="center" valign="middle"> ENAS / REA / REINFORCE / BOHB </td> <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td> </tr> <tr> <!-- (start second block) --> <td rowspan="1" align="center" valign="middle" halign="middle"> HPO </td> <td align="center" valign="middle"> HPO-CG </td> <td align="center" valign="middle"> Hyperparameter optimization with approximate gradient </td> <td align="center" valign="middle"> coming soon </a> </td> </tr> <tr> <!-- (start third block) --> <td rowspan="1" align="center" valign="middle" halign="middle"> Basic </td> <td align="center" valign="middle"> ResNet </td> <td align="center" valign="middle"> Deep Learning-based Image Classification </td> <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/BASELINE.md">BASELINE.md</a> </a> </td> </tr> </tbody> </table> ## 准备工作 Please install `Python>=3.6` and `PyTorch>=1.3.0`. (You could also run this project in lower versions of Python and PyTorch, but may have bugs). Some visualization codes may require `opencv`. CIFAR and ImageNet should be downloaded and extracted into `$TORCH_HOME`. Some methods use knowledge distillation (KD), which require pre-trained models. Please download these models from [Google Drive](https://drive.google.com/open?id=1ANmiYEGX-IQZTfH8w0aSpj-Wypg-0DR-) (or train by yourself) and save into `.latent-data`. ## 引用 如果您发现该项目对您的科研或工程有帮助,请考虑引用下列的某些文献: ``` @inproceedings{dong2020nasbench201, title = {NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search}, author = {Dong, Xuanyi and Yang, Yi}, booktitle = {International Conference on Learning Representations (ICLR)}, url = {https://openreview.net/forum?id=HJxyZkBKDr}, year = {2020} } @inproceedings{dong2019tas, title = {Network Pruning via Transformable Architecture Search}, author = {Dong, Xuanyi and Yang, Yi}, booktitle = {Neural Information Processing Systems (NeurIPS)}, year = {2019} } @inproceedings{dong2019one, title = {One-Shot Neural Architecture Search via Self-Evaluated Template Network}, author = {Dong, Xuanyi and Yang, Yi}, booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)}, pages = {3681--3690}, year = {2019} } @inproceedings{dong2019search, title = {Searching for A Robust Neural Architecture in Four GPU Hours}, author = {Dong, Xuanyi and Yang, Yi}, booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, pages = {1761--1770}, year = {2019} } ``` # 其他 如果你想要给这份代码库做贡献,请看[CONTRIBUTING.md](.github/CONTRIBUTING.md)。 此外,使用规范请参考[CODE-OF-CONDUCT.md](.github/CODE-OF-CONDUCT.md)。 # 许可证 The entire codebase is under [MIT license](LICENSE.md)