##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 # ##################################################### # python exps/experimental/test-resnest.py ##################################################### import sys, time, torch, random, argparse from PIL import ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True from copy import deepcopy from pathlib import Path lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from utils import get_model_infos torch.hub.list('zhanghang1989/ResNeSt', force_reload=True) for model_name, xshape in [('resnest50', (1,3,224,224)), ('resnest101', (1,3,256,256)), ('resnest200', (1,3,320,320)), ('resnest269', (1,3,416,416))]: # net = torch.hub.load('zhanghang1989/ResNeSt', model_name, pretrained=True) net = torch.hub.load('zhanghang1989/ResNeSt', model_name, pretrained=False) print('Model : {:}, input shape : {:}'.format(model_name, xshape)) flops, param = get_model_infos(net, xshape) print('flops : {:.3f}M'.format(flops)) print('params : {:.3f}M'.format(param))