############################################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 ########################## ############################################################################## # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # ############################################################################## # pytest --capture=tee-sys # ############################################################################## """This file is used to quickly test the API.""" import os import pytest import random from nats_bench.api_size import NATSsize from nats_bench.api_size import ALL_BASE_NAMES as sss_base_names from nats_bench.api_topology import NATStopology from nats_bench.api_topology import ALL_BASE_NAMES as tss_base_names def get_fake_torch_home_dir(): print('This file is {:}'.format(os.path.abspath(__file__))) print('The current directory is {:}'.format(os.path.abspath(os.getcwd()))) xname = 'FAKE_TORCH_HOME' if xname in os.environ: return os.environ['FAKE_TORCH_HOME'] else: return os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'fake_torch_dir') class TestNATSBench(object): def test_nats_bench_tss(self, benchmark_dir=None, fake_random=True): if benchmark_dir is None: benchmark_dir = os.path.join(get_fake_torch_home_dir(), sss_base_names[-1] + '-simple') return _test_nats_bench(benchmark_dir, True, fake_random) def test_nats_bench_sss(self, benchmark_dir=None, fake_random=True): if benchmark_dir is None: benchmark_dir = os.path.join(get_fake_torch_home_dir(), tss_base_names[-1] + '-simple') return _test_nats_bench(benchmark_dir, False, fake_random) def prepare_fake_tss(self): print('') tss_benchmark_dir = os.path.join(get_fake_torch_home_dir(), tss_base_names[-1] + '-simple') api = NATStopology(tss_benchmark_dir, True, False) return api def test_01_th_issue(self): # Link: https://github.com/D-X-Y/NATS-Bench/issues/1 api = self.prepare_fake_tss() # The performance of 0-th architecture on CIFAR-10 (trained by 12 epochs) info = api.get_more_info(0, 'cifar10', hp=12) # First of all, the data split in NATS-Bench is different from that in the official CIFAR paper. # In NATS-Bench, we split the original CIFAR-10 training set into two parts, i.e., a training set and a validation set. # In the following, we will use the splits of NATS-Bench to explain. print(info['comment']) print('The loss on the training + validation sets of CIFAR-10: {:}'.format(info['train-loss'])) print('The total training time for 12 epochs on the training + validation sets of CIFAR-10: {:}'.format(info['train-all-time'])) print('The per-epoch training time on CIFAR-10: {:}'.format(info['train-per-time'])) print('The total evaluation time on the test set of CIFAR-10 for 12 times: {:}'.format(info['test-all-time'])) print('The evaluation time on the test set of CIFAR-10: {:}'.format(info['test-per-time'])) cost_info = api.get_cost_info(0, 'cifar10') xkeys = ['T-train@epoch', # The per epoch training time on the training + validation sets of CIFAR-10. 'T-train@total', 'T-ori-test@epoch', # The time cost for the evaluation on CIFAR-10 test set. 'T-ori-test@total'] # T-ori-test@epoch * 12 times. for xkey in xkeys: print('The cost info [{:}] for 0-th architecture on CIFAR-10 is {:}'.format(xkey, cost_info[xkey])) def test_02_th_issue(self): # https://github.com/D-X-Y/NATS-Bench/issues/2 api = self.prepare_fake_tss() data = api.query_by_index(284, dataname='cifar10', hp=200) for xkey, xvalue in data.items(): print('{:} : {:}'.format(xkey, xvalue)) xinfo = data[777].get_train() print(xinfo) print(data[777].train_acc1es) info_012_epochs = api.get_more_info(284, 'cifar10', hp= 12) print('Train accuracy for 12 epochs is {:}'.format(info_012_epochs['train-accuracy'])) info_200_epochs = api.get_more_info(284, 'cifar10', hp=200) print('Train accuracy for 200 epochs is {:}'.format(info_200_epochs['train-accuracy'])) def _test_nats_bench(benchmark_dir, is_tss, fake_random, verbose=False): """The main test entry for NATS-Bench.""" if is_tss: api = NATStopology(benchmark_dir, True, verbose) else: api = NATSsize(benchmark_dir, True, verbose) if fake_random: test_indexes = [0, 11, 284] else: test_indexes = [random.randint(0, len(api) - 1) for _ in range(10)] key2dataset = {'cifar10': 'CIFAR-10', 'cifar100': 'CIFAR-100', 'ImageNet16-120': 'ImageNet16-120'} for index in test_indexes: print('\n\nEvaluate the {:5d}-th architecture.'.format(index)) for key, dataset in key2dataset.items(): # Query the loss / accuracy / time for the `index`-th candidate # architecture on CIFAR-10 # info is a dict, where you can easily figure out the meaning by key info = api.get_more_info(index, key) print(' -->> The performance on {:}: {:}'.format(dataset, info)) # Query the flops, params, latency. info is a dict. info = api.get_cost_info(index, key) print(' -->> The cost info on {:}: {:}'.format(dataset, info)) # Simulate the training of the `index`-th candidate: validation_accuracy, latency, time_cost, current_total_time_cost = api.simulate_train_eval( index, dataset=key, hp='12') print(' -->> The validation accuracy={:}, latency={:}, ' 'the current time cost={:} s, accumulated time cost={:} s' .format(validation_accuracy, latency, time_cost, current_total_time_cost)) # Print the configuration of the `index`-th architecture on CIFAR-10 config = api.get_net_config(index, key) print(' -->> The configuration on {:} is {:}'.format(dataset, config)) # Show the information of the `index`-th architecture api.show(index) with pytest.raises(ValueError): api.get_more_info(100000, 'cifar10')