##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # ##################################################### import abc import warnings from typing import Optional, Union, Callable import torch import torch.nn as nn from enum import Enum import spaces IntSpaceType = Union[int, spaces.Integer, spaces.Categorical] BoolSpaceType = Union[bool, spaces.Categorical] class LayerOrder(Enum): """This class defines the enumerations for order of operation in a residual or normalization-based layer.""" PreNorm = "pre-norm" PostNorm = "post-norm" class SuperRunMode(Enum): """This class defines the enumerations for Super Model Running Mode.""" FullModel = "fullmodel" Candidate = "candidate" Default = "fullmodel" class TensorContainer: """A class to maintain both parameters and buffers for a model.""" def __init__(self): self._names = [] self._tensors = [] self._param_or_buffers = [] self._name2index = dict() def additive(self, tensors): result = TensorContainer() for index, name in enumerate(self._names): new_tensor = self._tensors[index] + tensors[index] result.append(name, new_tensor, self._param_or_buffers[index]) return result def no_grad_clone(self): result = TensorContainer() with torch.no_grad(): for index, name in enumerate(self._names): result.append( name, self._tensors[index].clone(), self._param_or_buffers[index] ) return result @property def tensors(self): return self._tensors def flatten(self, tensors=None): if tensors is None: tensors = self._tensors tensors = [tensor.view(-1) for tensor in tensors] return torch.cat(tensors) def unflatten(self, tensor): tensors, s = [], 0 for raw_tensor in self._tensors: length = raw_tensor.numel() x = torch.reshape(tensor[s : s + length], shape=raw_tensor.shape) tensors.append(x) s += length return tensors def append(self, name, tensor, param_or_buffer): if not isinstance(tensor, torch.Tensor): raise TypeError( "The input tensor must be torch.Tensor instead of {:}".format( type(tensor) ) ) self._names.append(name) self._tensors.append(tensor) self._param_or_buffers.append(param_or_buffer) assert name not in self._name2index, "The [{:}] has already been added.".format( name ) self._name2index[name] = len(self._names) - 1 def query(self, name): if not self.has(name): raise ValueError( "The {:} is not in {:}".format(name, list(self._name2index.keys())) ) index = self._name2index[name] return self._tensors[index] def has(self, name): return name in self._name2index def has_prefix(self, prefix): for name, idx in self._name2index.items(): if name.startswith(prefix): return name return False def numel(self): total = 0 for tensor in self._tensors: total += tensor.numel() return total def __len__(self): return len(self._names) def __repr__(self): return "{name}({num} tensors)".format( name=self.__class__.__name__, num=len(self) ) class SuperModule(abc.ABC, nn.Module): """This class equips the nn.Module class with the ability to apply AutoDL.""" def __init__(self): super(SuperModule, self).__init__() self._super_run_type = SuperRunMode.Default self._abstract_child = None self._verbose = False def set_super_run_type(self, super_run_type): def _reset_super_run(m): if isinstance(m, SuperModule): m._super_run_type = super_run_type self.apply(_reset_super_run) def add_module(self, name: str, module: Optional[torch.nn.Module]) -> None: if not isinstance(module, SuperModule): warnings.warn( "Add {:}:{:} module, which is not SuperModule, into {:}".format( name, module.__class__.__name__, self.__class__.__name__ ) + "\n" + "It may cause some functions invalid." ) super(SuperModule, self).add_module(name, module) def apply_verbose(self, verbose): def _reset_verbose(m): if isinstance(m, SuperModule): m._verbose = verbose self.apply(_reset_verbose) def apply_candidate(self, abstract_child): if not isinstance(abstract_child, spaces.VirtualNode): raise ValueError( "Invalid abstract child program: {:}".format(abstract_child) ) self._abstract_child = abstract_child def named_parameters_buffers(self): container = TensorContainer() for name, param in self.named_parameters(): container.append(name, param, True) for name, buf in self.named_buffers(): container.append(name, buf, False) return container @property def abstract_search_space(self): raise NotImplementedError @property def super_run_type(self): return self._super_run_type @property def abstract_child(self): return self._abstract_child @property def verbose(self): return self._verbose @abc.abstractmethod def forward_raw(self, *inputs): """Use the largest candidate for forward. Similar to the original PyTorch model.""" raise NotImplementedError @abc.abstractmethod def forward_candidate(self, *inputs): raise NotImplementedError @property def name_with_id(self): return "name={:}, id={:}".format(self.__class__.__name__, id(self)) def get_shape_str(self, tensors): if isinstance(tensors, (list, tuple)): shapes = [self.get_shape_str(tensor) for tensor in tensors] if len(shapes) == 1: return shapes[0] else: return ", ".join(shapes) elif isinstance(tensors, (torch.Tensor, nn.Parameter)): return str(tuple(tensors.shape)) else: raise TypeError("Invalid input type: {:}.".format(type(tensors))) def forward(self, *inputs): if self.verbose: print( "[{:}] inputs shape: {:}".format( self.name_with_id, self.get_shape_str(inputs) ) ) if self.super_run_type == SuperRunMode.FullModel: outputs = self.forward_raw(*inputs) elif self.super_run_type == SuperRunMode.Candidate: outputs = self.forward_candidate(*inputs) else: raise ModeError( "Unknown Super Model Run Mode: {:}".format(self.super_run_type) ) if self.verbose: print( "[{:}] outputs shape: {:}".format( self.name_with_id, self.get_shape_str(outputs) ) ) return outputs def forward_with_container(self, inputs, container, prefix=[]): raise NotImplementedError