################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 # ################################################## from __future__ import division from __future__ import print_function import math from functools import partial from typing import Optional, Text import torch import torch.nn as nn import torch.nn.functional as F import layers as xlayers DEFAULT_NET_CONFIG = dict( d_feat=6, embed_dim=64, depth=5, num_heads=4, mlp_ratio=4.0, qkv_bias=True, pos_drop=0.0, mlp_drop_rate=0.0, attn_drop_rate=0.0, drop_path_rate=0.0, ) # Real Model class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.0, proj_drop=0.0): super(Attention, self).__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or math.sqrt(head_dim) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__( self, dim, num_heads, mlp_ratio=4.0, qkv_bias=False, qk_scale=None, attn_drop=0.0, mlp_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, ): super(Block, self).__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=mlp_drop ) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = xlayers.MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=mlp_drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class SimpleEmbed(nn.Module): def __init__(self, d_feat, embed_dim): super(SimpleEmbed, self).__init__() self.d_feat = d_feat self.embed_dim = embed_dim self.proj = nn.Linear(d_feat, embed_dim) def forward(self, x): x = x.reshape(len(x), self.d_feat, -1) # [N, F*T] -> [N, F, T] x = x.permute(0, 2, 1) # [N, F, T] -> [N, T, F] out = self.proj(x) * math.sqrt(self.embed_dim) return out class TransformerModel(nn.Module): def __init__( self, d_feat: int = 6, embed_dim: int = 64, depth: int = 4, num_heads: int = 4, mlp_ratio: float = 4.0, qkv_bias: bool = True, qk_scale: Optional[float] = None, pos_drop: float = 0.0, mlp_drop_rate: float = 0.0, attn_drop_rate: float = 0.0, drop_path_rate: float = 0.0, norm_layer: Optional[nn.Module] = None, max_seq_len: int = 65, ): """ Args: d_feat (int, tuple): input image size embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True qk_scale (float): override default qk scale of head_dim ** -0.5 if set pos_drop (float): dropout rate for the positional embedding mlp_drop_rate (float): the dropout rate for MLP layers in a block attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate norm_layer: (nn.Module): normalization layer """ super(TransformerModel, self).__init__() self.embed_dim = embed_dim self.num_features = embed_dim norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=max_seq_len, dropout=pos_drop) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList( [ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop_rate, mlp_drop=mlp_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, ) for i in range(depth) ] ) self.norm = norm_layer(embed_dim) # regression head self.head = nn.Linear(self.num_features, 1) xlayers.trunc_normal_(self.cls_token, std=0.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): xlayers.trunc_normal_(m.weight, std=0.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward_features(self, x): batch, flatten_size = x.shape feats = self.input_embed(x) # batch * 60 * 64 cls_tokens = self.cls_token.expand(batch, -1, -1) # stole cls_tokens impl from Phil Wang, thanks feats_w_ct = torch.cat((cls_tokens, feats), dim=1) feats_w_tp = self.pos_embed(feats_w_ct) xfeats = feats_w_tp for block in self.blocks: xfeats = block(xfeats) xfeats = self.norm(xfeats)[:, 0] return xfeats def forward(self, x): feats = self.forward_features(x) predicts = self.head(feats).squeeze(-1) return predicts def get_transformer(config): if not isinstance(config, dict): raise ValueError("Invalid Configuration: {:}".format(config)) name = config.get("name", "basic") if name == "basic": model = TransformerModel( d_feat=config.get("d_feat"), embed_dim=config.get("embed_dim"), depth=config.get("depth"), num_heads=config.get("num_heads"), mlp_ratio=config.get("mlp_ratio"), qkv_bias=config.get("qkv_bias"), qk_scale=config.get("qkv_scale"), pos_drop=config.get("pos_drop"), mlp_drop_rate=config.get("mlp_drop_rate"), attn_drop_rate=config.get("attn_drop_rate"), drop_path_rate=config.get("drop_path_rate"), norm_layer=config.get("norm_layer", None), ) else: raise ValueError("Unknown model name: {:}".format(name)) return model