################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # ###################################################################################### # python ./exps/NATS-algos/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo darts-v1 --rand_seed 777 # python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v1 --drop_path_rate 0.3 # python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v1 #### # python ./exps/NATS-algos/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo darts-v2 --rand_seed 777 # python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v2 # python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v2 #### # python ./exps/NATS-algos/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo gdas --rand_seed 777 # python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo gdas # python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo gdas #### # python ./exps/NATS-algos/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo setn --rand_seed 777 # python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo setn # python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo setn #### # python ./exps/NATS-algos/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo random --rand_seed 777 # python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo random # python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo random #### # python ./exps/NATS-algos/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 --rand_seed 777 # python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 --rand_seed 777 # python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001 --rand_seed 777 #### # The following scripts are added in 20 Mar 2022 # python ./exps/NATS-algos/search-cell.py --dataset cifar10 --data_path $TORCH_HOME/cifar.python --algo gdas_v1 --rand_seed 777 ###################################################################################### import os, sys, time, random, argparse import numpy as np from copy import deepcopy import torch import torch.nn as nn from xautodl.config_utils import load_config, dict2config, configure2str from xautodl.datasets import get_datasets, get_nas_search_loaders from xautodl.procedures import ( prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler, ) from xautodl.utils import count_parameters_in_MB, obtain_accuracy from xautodl.log_utils import AverageMeter, time_string, convert_secs2time from xautodl.models import get_cell_based_tiny_net, get_search_spaces from nats_bench import create # The following three functions are used for DARTS-V2 def _concat(xs): return torch.cat([x.view(-1) for x in xs]) def _hessian_vector_product( vector, network, criterion, base_inputs, base_targets, r=1e-2 ): R = r / _concat(vector).norm() for p, v in zip(network.weights, vector): p.data.add_(R, v) _, logits = network(base_inputs) loss = criterion(logits, base_targets) grads_p = torch.autograd.grad(loss, network.alphas) for p, v in zip(network.weights, vector): p.data.sub_(2 * R, v) _, logits = network(base_inputs) loss = criterion(logits, base_targets) grads_n = torch.autograd.grad(loss, network.alphas) for p, v in zip(network.weights, vector): p.data.add_(R, v) return [(x - y).div_(2 * R) for x, y in zip(grads_p, grads_n)] def backward_step_unrolled( network, criterion, base_inputs, base_targets, w_optimizer, arch_inputs, arch_targets, ): # _compute_unrolled_model _, logits = network(base_inputs) loss = criterion(logits, base_targets) LR, WD, momentum = ( w_optimizer.param_groups[0]["lr"], w_optimizer.param_groups[0]["weight_decay"], w_optimizer.param_groups[0]["momentum"], ) with torch.no_grad(): theta = _concat(network.weights) try: moment = _concat( w_optimizer.state[v]["momentum_buffer"] for v in network.weights ) moment = moment.mul_(momentum) except: moment = torch.zeros_like(theta) dtheta = _concat(torch.autograd.grad(loss, network.weights)) + WD * theta params = theta.sub(LR, moment + dtheta) unrolled_model = deepcopy(network) model_dict = unrolled_model.state_dict() new_params, offset = {}, 0 for k, v in network.named_parameters(): if "arch_parameters" in k: continue v_length = np.prod(v.size()) new_params[k] = params[offset : offset + v_length].view(v.size()) offset += v_length model_dict.update(new_params) unrolled_model.load_state_dict(model_dict) unrolled_model.zero_grad() _, unrolled_logits = unrolled_model(arch_inputs) unrolled_loss = criterion(unrolled_logits, arch_targets) unrolled_loss.backward() dalpha = unrolled_model.arch_parameters.grad vector = [v.grad.data for v in unrolled_model.weights] [implicit_grads] = _hessian_vector_product( vector, network, criterion, base_inputs, base_targets ) dalpha.data.sub_(LR, implicit_grads.data) if network.arch_parameters.grad is None: network.arch_parameters.grad = deepcopy(dalpha) else: network.arch_parameters.grad.data.copy_(dalpha.data) return unrolled_loss.detach(), unrolled_logits.detach() def search_func( xloader, network, criterion, scheduler, w_optimizer, a_optimizer, epoch_str, print_freq, algo, logger, ): data_time, batch_time = AverageMeter(), AverageMeter() base_losses, base_top1, base_top5 = AverageMeter(), AverageMeter(), AverageMeter() arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() end = time.time() network.train() for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate( xloader ): scheduler.update(None, 1.0 * step / len(xloader)) base_inputs = base_inputs.cuda(non_blocking=True) arch_inputs = arch_inputs.cuda(non_blocking=True) base_targets = base_targets.cuda(non_blocking=True) arch_targets = arch_targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - end) # Update the weights if algo == "setn": sampled_arch = network.dync_genotype(True) network.set_cal_mode("dynamic", sampled_arch) elif algo == "gdas": network.set_cal_mode("gdas", None) elif algo == "gdas_v1": network.set_cal_mode("gdas_v1", None) elif algo.startswith("darts"): network.set_cal_mode("joint", None) elif algo == "random": network.set_cal_mode("urs", None) elif algo == "enas": with torch.no_grad(): network.controller.eval() _, _, sampled_arch = network.controller() network.set_cal_mode("dynamic", sampled_arch) else: raise ValueError("Invalid algo name : {:}".format(algo)) network.zero_grad() _, logits = network(base_inputs) base_loss = criterion(logits, base_targets) base_loss.backward() w_optimizer.step() # record base_prec1, base_prec5 = obtain_accuracy( logits.data, base_targets.data, topk=(1, 5) ) base_losses.update(base_loss.item(), base_inputs.size(0)) base_top1.update(base_prec1.item(), base_inputs.size(0)) base_top5.update(base_prec5.item(), base_inputs.size(0)) # update the architecture-weight if algo == "setn": network.set_cal_mode("joint") elif algo == "gdas": network.set_cal_mode("gdas", None) elif algo == "gdas_v1": network.set_cal_mode("gdas_v1", None) elif algo.startswith("darts"): network.set_cal_mode("joint", None) elif algo == "random": network.set_cal_mode("urs", None) elif algo != "enas": raise ValueError("Invalid algo name : {:}".format(algo)) network.zero_grad() if algo == "darts-v2": arch_loss, logits = backward_step_unrolled( network, criterion, base_inputs, base_targets, w_optimizer, arch_inputs, arch_targets, ) a_optimizer.step() elif algo == "random" or algo == "enas": with torch.no_grad(): _, logits = network(arch_inputs) arch_loss = criterion(logits, arch_targets) else: _, logits = network(arch_inputs) arch_loss = criterion(logits, arch_targets) arch_loss.backward() a_optimizer.step() # record arch_prec1, arch_prec5 = obtain_accuracy( logits.data, arch_targets.data, topk=(1, 5) ) arch_losses.update(arch_loss.item(), arch_inputs.size(0)) arch_top1.update(arch_prec1.item(), arch_inputs.size(0)) arch_top5.update(arch_prec5.item(), arch_inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if step % print_freq == 0 or step + 1 == len(xloader): Sstr = ( "*SEARCH* " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(xloader)) ) Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( batch_time=batch_time, data_time=data_time ) Wstr = "Base [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( loss=base_losses, top1=base_top1, top5=base_top5 ) Astr = "Arch [Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]".format( loss=arch_losses, top1=arch_top1, top5=arch_top5 ) logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Astr) return ( base_losses.avg, base_top1.avg, base_top5.avg, arch_losses.avg, arch_top1.avg, arch_top5.avg, ) def train_controller( xloader, network, criterion, optimizer, prev_baseline, epoch_str, print_freq, logger ): # config. (containing some necessary arg) # baseline: The baseline score (i.e. average val_acc) from the previous epoch data_time, batch_time = AverageMeter(), AverageMeter() ( GradnormMeter, LossMeter, ValAccMeter, EntropyMeter, BaselineMeter, RewardMeter, xend, ) = ( AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), time.time(), ) controller_num_aggregate = 20 controller_train_steps = 50 controller_bl_dec = 0.99 controller_entropy_weight = 0.0001 network.eval() network.controller.train() network.controller.zero_grad() loader_iter = iter(xloader) for step in range(controller_train_steps * controller_num_aggregate): try: inputs, targets = next(loader_iter) except: loader_iter = iter(xloader) inputs, targets = next(loader_iter) inputs = inputs.cuda(non_blocking=True) targets = targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - xend) log_prob, entropy, sampled_arch = network.controller() with torch.no_grad(): network.set_cal_mode("dynamic", sampled_arch) _, logits = network(inputs) val_top1, val_top5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5)) val_top1 = val_top1.view(-1) / 100 reward = val_top1 + controller_entropy_weight * entropy if prev_baseline is None: baseline = val_top1 else: baseline = prev_baseline - (1 - controller_bl_dec) * ( prev_baseline - reward ) loss = -1 * log_prob * (reward - baseline) # account RewardMeter.update(reward.item()) BaselineMeter.update(baseline.item()) ValAccMeter.update(val_top1.item() * 100) LossMeter.update(loss.item()) EntropyMeter.update(entropy.item()) # Average gradient over controller_num_aggregate samples loss = loss / controller_num_aggregate loss.backward(retain_graph=True) # measure elapsed time batch_time.update(time.time() - xend) xend = time.time() if (step + 1) % controller_num_aggregate == 0: grad_norm = torch.nn.utils.clip_grad_norm_( network.controller.parameters(), 5.0 ) GradnormMeter.update(grad_norm) optimizer.step() network.controller.zero_grad() if step % print_freq == 0: Sstr = ( "*Train-Controller* " + time_string() + " [{:}][{:03d}/{:03d}]".format( epoch_str, step, controller_train_steps * controller_num_aggregate ) ) Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( batch_time=batch_time, data_time=data_time ) Wstr = "[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})".format( loss=LossMeter, top1=ValAccMeter, reward=RewardMeter, basel=BaselineMeter, ) Estr = "Entropy={:.4f} ({:.4f})".format(EntropyMeter.val, EntropyMeter.avg) logger.log(Sstr + " " + Tstr + " " + Wstr + " " + Estr) return LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg def get_best_arch(xloader, network, n_samples, algo): with torch.no_grad(): network.eval() if algo == "random": archs, valid_accs = network.return_topK(n_samples, True), [] elif algo == "setn": archs, valid_accs = network.return_topK(n_samples, False), [] elif algo.startswith("darts") or algo == "gdas" or algo == "gdas_v1": arch = network.genotype archs, valid_accs = [arch], [] elif algo == "enas": archs, valid_accs = [], [] for _ in range(n_samples): _, _, sampled_arch = network.controller() archs.append(sampled_arch) else: raise ValueError("Invalid algorithm name : {:}".format(algo)) loader_iter = iter(xloader) for i, sampled_arch in enumerate(archs): network.set_cal_mode("dynamic", sampled_arch) try: inputs, targets = next(loader_iter) except: loader_iter = iter(xloader) inputs, targets = next(loader_iter) _, logits = network(inputs.cuda(non_blocking=True)) val_top1, val_top5 = obtain_accuracy( logits.cpu().data, targets.data, topk=(1, 5) ) valid_accs.append(val_top1.item()) best_idx = np.argmax(valid_accs) best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx] return best_arch, best_valid_acc def valid_func(xloader, network, criterion, algo, logger): data_time, batch_time = AverageMeter(), AverageMeter() arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter() end = time.time() with torch.no_grad(): network.eval() for step, (arch_inputs, arch_targets) in enumerate(xloader): arch_targets = arch_targets.cuda(non_blocking=True) # measure data loading time data_time.update(time.time() - end) # prediction _, logits = network(arch_inputs.cuda(non_blocking=True)) arch_loss = criterion(logits, arch_targets) # record arch_prec1, arch_prec5 = obtain_accuracy( logits.data, arch_targets.data, topk=(1, 5) ) arch_losses.update(arch_loss.item(), arch_inputs.size(0)) arch_top1.update(arch_prec1.item(), arch_inputs.size(0)) arch_top5.update(arch_prec5.item(), arch_inputs.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() return arch_losses.avg, arch_top1.avg, arch_top5.avg def main(xargs): assert torch.cuda.is_available(), "CUDA is not available." torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.set_num_threads(xargs.workers) prepare_seed(xargs.rand_seed) logger = prepare_logger(args) train_data, valid_data, xshape, class_num = get_datasets( xargs.dataset, xargs.data_path, -1 ) if xargs.overwite_epochs is None: extra_info = {"class_num": class_num, "xshape": xshape} else: extra_info = { "class_num": class_num, "xshape": xshape, "epochs": xargs.overwite_epochs, } config = load_config(xargs.config_path, extra_info, logger) search_loader, train_loader, valid_loader = get_nas_search_loaders( train_data, valid_data, xargs.dataset, "configs/nas-benchmark/", (config.batch_size, config.test_batch_size), xargs.workers, ) logger.log( "||||||| {:10s} ||||||| Search-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format( xargs.dataset, len(search_loader), len(valid_loader), config.batch_size ) ) logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config)) search_space = get_search_spaces(xargs.search_space, "nats-bench") model_config = dict2config( dict( name="generic", C=xargs.channel, N=xargs.num_cells, max_nodes=xargs.max_nodes, num_classes=class_num, space=search_space, affine=bool(xargs.affine), track_running_stats=bool(xargs.track_running_stats), ), None, ) logger.log("search space : {:}".format(search_space)) logger.log("model config : {:}".format(model_config)) search_model = get_cell_based_tiny_net(model_config) search_model.set_algo(xargs.algo) logger.log("{:}".format(search_model)) w_optimizer, w_scheduler, criterion = get_optim_scheduler( search_model.weights, config ) a_optimizer = torch.optim.Adam( search_model.alphas, lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay, eps=xargs.arch_eps, ) logger.log("w-optimizer : {:}".format(w_optimizer)) logger.log("a-optimizer : {:}".format(a_optimizer)) logger.log("w-scheduler : {:}".format(w_scheduler)) logger.log("criterion : {:}".format(criterion)) params = count_parameters_in_MB(search_model) logger.log("The parameters of the search model = {:.2f} MB".format(params)) logger.log("search-space : {:}".format(search_space)) if bool(xargs.use_api): api = create(None, "topology", fast_mode=True, verbose=False) else: api = None logger.log("{:} create API = {:} done".format(time_string(), api)) last_info, model_base_path, model_best_path = ( logger.path("info"), logger.path("model"), logger.path("best"), ) network, criterion = search_model.cuda(), criterion.cuda() # use a single GPU last_info, model_base_path, model_best_path = ( logger.path("info"), logger.path("model"), logger.path("best"), ) if last_info.exists(): # automatically resume from previous checkpoint logger.log( "=> loading checkpoint of the last-info '{:}' start".format(last_info) ) last_info = torch.load(last_info) start_epoch = last_info["epoch"] checkpoint = torch.load(last_info["last_checkpoint"]) genotypes = checkpoint["genotypes"] baseline = checkpoint["baseline"] valid_accuracies = checkpoint["valid_accuracies"] search_model.load_state_dict(checkpoint["search_model"]) w_scheduler.load_state_dict(checkpoint["w_scheduler"]) w_optimizer.load_state_dict(checkpoint["w_optimizer"]) a_optimizer.load_state_dict(checkpoint["a_optimizer"]) logger.log( "=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format( last_info, start_epoch ) ) else: logger.log("=> do not find the last-info file : {:}".format(last_info)) start_epoch, valid_accuracies, genotypes = ( 0, {"best": -1}, {-1: network.return_topK(1, True)[0]}, ) baseline = None # start training start_time, search_time, epoch_time, total_epoch = ( time.time(), AverageMeter(), AverageMeter(), config.epochs + config.warmup, ) for epoch in range(start_epoch, total_epoch): w_scheduler.update(epoch, 0.0) need_time = "Time Left: {:}".format( convert_secs2time(epoch_time.val * (total_epoch - epoch), True) ) epoch_str = "{:03d}-{:03d}".format(epoch, total_epoch) logger.log( "\n[Search the {:}-th epoch] {:}, LR={:}".format( epoch_str, need_time, min(w_scheduler.get_lr()) ) ) network.set_drop_path(float(epoch + 1) / total_epoch, xargs.drop_path_rate) if xargs.algo == "gdas" or xargs.algo == "gdas_v1": network.set_tau( xargs.tau_max - (xargs.tau_max - xargs.tau_min) * epoch / (total_epoch - 1) ) logger.log( "[RESET tau as : {:} and drop_path as {:}]".format( network.tau, network.drop_path ) ) ( search_w_loss, search_w_top1, search_w_top5, search_a_loss, search_a_top1, search_a_top5, ) = search_func( search_loader, network, criterion, w_scheduler, w_optimizer, a_optimizer, epoch_str, xargs.print_freq, xargs.algo, logger, ) search_time.update(time.time() - start_time) logger.log( "[{:}] search [base] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%, time-cost={:.1f} s".format( epoch_str, search_w_loss, search_w_top1, search_w_top5, search_time.sum ) ) logger.log( "[{:}] search [arch] : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%".format( epoch_str, search_a_loss, search_a_top1, search_a_top5 ) ) if xargs.algo == "enas": ctl_loss, ctl_acc, baseline, ctl_reward = train_controller( valid_loader, network, criterion, a_optimizer, baseline, epoch_str, xargs.print_freq, logger, ) logger.log( "[{:}] controller : loss={:}, acc={:}, baseline={:}, reward={:}".format( epoch_str, ctl_loss, ctl_acc, baseline, ctl_reward ) ) genotype, temp_accuracy = get_best_arch( valid_loader, network, xargs.eval_candidate_num, xargs.algo ) if xargs.algo == "setn" or xargs.algo == "enas": network.set_cal_mode("dynamic", genotype) elif xargs.algo == "gdas": network.set_cal_mode("gdas", None) elif xargs.algo == "gdas_v1": network.set_cal_mode("gdas_v1", None) elif xargs.algo.startswith("darts"): network.set_cal_mode("joint", None) elif xargs.algo == "random": network.set_cal_mode("urs", None) else: raise ValueError("Invalid algorithm name : {:}".format(xargs.algo)) logger.log( "[{:}] - [get_best_arch] : {:} -> {:}".format( epoch_str, genotype, temp_accuracy ) ) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion, xargs.algo, logger ) logger.log( "[{:}] evaluate : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}% | {:}".format( epoch_str, valid_a_loss, valid_a_top1, valid_a_top5, genotype ) ) valid_accuracies[epoch] = valid_a_top1 genotypes[epoch] = genotype logger.log( "<<<--->>> The {:}-th epoch : {:}".format(epoch_str, genotypes[epoch]) ) # save checkpoint save_path = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(xargs), "baseline": baseline, "search_model": search_model.state_dict(), "w_optimizer": w_optimizer.state_dict(), "a_optimizer": a_optimizer.state_dict(), "w_scheduler": w_scheduler.state_dict(), "genotypes": genotypes, "valid_accuracies": valid_accuracies, }, model_base_path, logger, ) last_info = save_checkpoint( { "epoch": epoch + 1, "args": deepcopy(args), "last_checkpoint": save_path, }, logger.path("info"), logger, ) with torch.no_grad(): logger.log("{:}".format(search_model.show_alphas())) if api is not None: logger.log("{:}".format(api.query_by_arch(genotypes[epoch], "200"))) # measure elapsed time epoch_time.update(time.time() - start_time) start_time = time.time() # the final post procedure : count the time start_time = time.time() genotype, temp_accuracy = get_best_arch( valid_loader, network, xargs.eval_candidate_num, xargs.algo ) if xargs.algo == "setn" or xargs.algo == "enas": network.set_cal_mode("dynamic", genotype) elif xargs.algo == "gdas": network.set_cal_mode("gdas", None) elif xargs.algo == "gdas_v1": network.set_cal_mode("gdas_v1", None) elif xargs.algo.startswith("darts"): network.set_cal_mode("joint", None) elif xargs.algo == "random": network.set_cal_mode("urs", None) else: raise ValueError("Invalid algorithm name : {:}".format(xargs.algo)) search_time.update(time.time() - start_time) valid_a_loss, valid_a_top1, valid_a_top5 = valid_func( valid_loader, network, criterion, xargs.algo, logger ) logger.log( "Last : the gentotype is : {:}, with the validation accuracy of {:.3f}%.".format( genotype, valid_a_top1 ) ) logger.log("\n" + "-" * 100) # check the performance from the architecture dataset logger.log( "[{:}] run {:} epochs, cost {:.1f} s, last-geno is {:}.".format( xargs.algo, total_epoch, search_time.sum, genotype ) ) if api is not None: logger.log("{:}".format(api.query_by_arch(genotype, "200"))) logger.close() if __name__ == "__main__": parser = argparse.ArgumentParser("Weight sharing NAS methods to search for cells.") parser.add_argument("--data_path", type=str, help="Path to dataset") parser.add_argument( "--dataset", type=str, choices=["cifar10", "cifar100", "ImageNet16-120"], help="Choose between Cifar10/100 and ImageNet-16.", ) parser.add_argument( "--search_space", type=str, default="tss", choices=["tss"], help="The search space name.", ) parser.add_argument( "--algo", type=str, choices=["darts-v1", "darts-v2", "gdas", "gdas_v1", "setn", "random", "enas"], help="The search space name.", ) parser.add_argument( "--use_api", type=int, default=1, choices=[0, 1], help="Whether use API or not (which will cost much memory).", ) # FOR GDAS parser.add_argument( "--tau_min", type=float, default=0.1, help="The minimum tau for Gumbel Softmax." ) parser.add_argument( "--tau_max", type=float, default=10, help="The maximum tau for Gumbel Softmax." ) # channels and number-of-cells parser.add_argument( "--max_nodes", type=int, default=4, help="The maximum number of nodes." ) parser.add_argument( "--channel", type=int, default=16, help="The number of channels." ) parser.add_argument( "--num_cells", type=int, default=5, help="The number of cells in one stage." ) # parser.add_argument( "--eval_candidate_num", type=int, default=100, help="The number of selected architectures to evaluate.", ) # parser.add_argument( "--track_running_stats", type=int, default=0, choices=[0, 1], help="Whether use track_running_stats or not in the BN layer.", ) parser.add_argument( "--affine", type=int, default=0, choices=[0, 1], help="Whether use affine=True or False in the BN layer.", ) parser.add_argument( "--config_path", type=str, default="./configs/nas-benchmark/algos/weight-sharing.config", help="The path of configuration.", ) parser.add_argument( "--overwite_epochs", type=int, help="The number of epochs to overwrite that value in config files.", ) # architecture leraning rate parser.add_argument( "--arch_learning_rate", type=float, default=3e-4, help="learning rate for arch encoding", ) parser.add_argument( "--arch_weight_decay", type=float, default=1e-3, help="weight decay for arch encoding", ) parser.add_argument( "--arch_eps", type=float, default=1e-8, help="weight decay for arch encoding" ) parser.add_argument("--drop_path_rate", type=float, help="The drop path rate.") # log parser.add_argument( "--workers", type=int, default=2, help="number of data loading workers (default: 2)", ) parser.add_argument( "--save_dir", type=str, default="./output/search", help="Folder to save checkpoints and log.", ) parser.add_argument( "--print_freq", type=int, default=200, help="print frequency (default: 200)" ) parser.add_argument("--rand_seed", type=int, help="manual seed") args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) if args.overwite_epochs is None: args.save_dir = os.path.join( "{:}-{:}".format(args.save_dir, args.search_space), args.dataset, "{:}-affine{:}_BN{:}-{:}".format( args.algo, args.affine, args.track_running_stats, args.drop_path_rate ), ) else: args.save_dir = os.path.join( "{:}-{:}".format(args.save_dir, args.search_space), args.dataset, "{:}-affine{:}_BN{:}-E{:}-{:}".format( args.algo, args.affine, args.track_running_stats, args.overwite_epochs, args.drop_path_rate, ), ) main(args)