# Deep Residual Learning for Image Recognition, CVPR 2016 import torch.nn as nn from .initialization import initialize_resnet def conv3x3(in_planes, out_planes, stride=1, groups=1): return nn.Conv2d( in_planes, out_planes, kernel_size=3, stride=stride, padding=1, groups=groups, bias=False, ) def conv1x1(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__( self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64 ): super(BasicBlock, self).__init__() if groups != 1 or base_width != 64: raise ValueError("BasicBlock only supports groups=1 and base_width=64") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__( self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64 ): super(Bottleneck, self).__init__() width = int(planes * (base_width / 64.0)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = nn.BatchNorm2d(width) self.conv2 = conv3x3(width, width, stride, groups) self.bn2 = nn.BatchNorm2d(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet(nn.Module): def __init__( self, block_name, layers, deep_stem, num_classes, zero_init_residual, groups, width_per_group, ): super(ResNet, self).__init__() # planes = [int(width_per_group * groups * 2 ** i) for i in range(4)] if block_name == "BasicBlock": block = BasicBlock elif block_name == "Bottleneck": block = Bottleneck else: raise ValueError("invalid block-name : {:}".format(block_name)) if not deep_stem: self.conv = nn.Sequential( nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), ) else: self.conv = nn.Sequential( nn.Conv2d(3, 32, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.Conv2d(32, 32, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(32), nn.ReLU(inplace=True), nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(64), nn.ReLU(inplace=True), ) self.inplanes = 64 self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer( block, 64, layers[0], stride=1, groups=groups, base_width=width_per_group ) self.layer2 = self._make_layer( block, 128, layers[1], stride=2, groups=groups, base_width=width_per_group ) self.layer3 = self._make_layer( block, 256, layers[2], stride=2, groups=groups, base_width=width_per_group ) self.layer4 = self._make_layer( block, 512, layers[3], stride=2, groups=groups, base_width=width_per_group ) self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes) self.message = ( "block = {:}, layers = {:}, deep_stem = {:}, num_classes = {:}".format( block, layers, deep_stem, num_classes ) ) self.apply(initialize_resnet) # Zero-initialize the last BN in each residual branch, # so that the residual branch starts with zeros, and each residual block behaves like an identity. # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677 if zero_init_residual: for m in self.modules(): if isinstance(m, Bottleneck): nn.init.constant_(m.bn3.weight, 0) elif isinstance(m, BasicBlock): nn.init.constant_(m.bn2.weight, 0) def _make_layer(self, block, planes, blocks, stride, groups, base_width): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: if stride == 2: downsample = nn.Sequential( nn.AvgPool2d(kernel_size=2, stride=2, padding=0), conv1x1(self.inplanes, planes * block.expansion, 1), nn.BatchNorm2d(planes * block.expansion), ) elif stride == 1: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), nn.BatchNorm2d(planes * block.expansion), ) else: raise ValueError("invalid stride [{:}] for downsample".format(stride)) layers = [] layers.append( block(self.inplanes, planes, stride, downsample, groups, base_width) ) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, 1, None, groups, base_width)) return nn.Sequential(*layers) def get_message(self): return self.message def forward(self, x): x = self.conv(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) features = self.avgpool(x) features = features.view(features.size(0), -1) logits = self.fc(features) return features, logits