import os, sys, torch import torchvision.transforms as transforms from TieredImageNet import TieredImageNet from MetaBatchSampler import MetaBatchSampler root_dir = os.environ['TORCH_HOME'] + '/tiered-imagenet' print ('root : {:}'.format(root_dir)) means, stds = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(84, padding=8), transforms.ToTensor(), transforms.Normalize(means, stds)] transform = transforms.Compose(lists) dataset = TieredImageNet(root_dir, 'val-test', transform) image, label = dataset[111] print ('image shape = {:}, label = {:}'.format(image.size(), label)) print ('image : min = {:}, max = {:} ||| label : {:}'.format(image.min(), image.max(), label)) sampler = MetaBatchSampler(dataset.labels, 250, 100, 10) dataloader = torch.utils.data.DataLoader(dataset, batch_sampler=sampler) print ('the length of dataset : {:}'.format( len(dataset) )) print ('the length of loader : {:}'.format( len(dataloader) )) for images, labels in dataloader: print ('images : {:}'.format( images.size() )) print ('labels : {:}'.format( labels.size() )) for i in range(3): print ('image-value-[{:}] : {:} ~ {:}, mean={:}, std={:}'.format(i, images[:,i].min(), images[:,i].max(), images[:,i].mean(), images[:,i].std())) print('-----')