import math, random, torch import warnings import torch.nn as nn import torch.nn.functional as F from copy import deepcopy from ..cell_operations import OPS class SearchCell(nn.Module): def __init__(self, C_in, C_out, stride, max_nodes, op_names): super(SearchCell, self).__init__() self.op_names = deepcopy(op_names) self.edges = nn.ModuleDict() self.max_nodes = max_nodes self.in_dim = C_in self.out_dim = C_out for i in range(1, max_nodes): for j in range(i): node_str = '{:}<-{:}'.format(i, j) if j == 0: xlists = [OPS[op_name](C_in , C_out, stride) for op_name in op_names] else: xlists = [OPS[op_name](C_in , C_out, 1) for op_name in op_names] self.edges[ node_str ] = nn.ModuleList( xlists ) self.edge_keys = sorted(list(self.edges.keys())) self.edge2index = {key:i for i, key in enumerate(self.edge_keys)} self.num_edges = len(self.edges) def extra_repr(self): string = 'info :: {max_nodes} nodes, inC={in_dim}, outC={out_dim}'.format(**self.__dict__) return string def forward(self, inputs, weightss): nodes = [inputs] for i in range(1, self.max_nodes): inter_nodes = [] for j in range(i): node_str = '{:}<-{:}'.format(i, j) weights = weightss[ self.edge2index[node_str] ] inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) ) nodes.append( sum(inter_nodes) ) return nodes[-1] # GDAS def forward_gdas(self, inputs, alphas, _tau): avoid_zero = 0 while True: gumbels = -torch.empty_like(alphas).exponential_().log() logits = (alphas.log_softmax(dim=1) + gumbels) / _tau probs = nn.functional.softmax(logits, dim=1) index = probs.max(-1, keepdim=True)[1] one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0) hardwts = one_h - probs.detach() + probs if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()): continue # avoid the numerical error nodes = [inputs] for i in range(1, self.max_nodes): inter_nodes = [] for j in range(i): node_str = '{:}<-{:}'.format(i, j) weights = hardwts[ self.edge2index[node_str] ] argmaxs = index[ self.edge2index[node_str] ].item() weigsum = sum( weights[_ie] * edge(nodes[j]) if _ie == argmaxs else weights[_ie] for _ie, edge in enumerate(self.edges[node_str]) ) inter_nodes.append( weigsum ) nodes.append( sum(inter_nodes) ) avoid_zero += 1 if nodes[-1].sum().item() == 0: if avoid_zero < 10: continue else: warnings.warn('get zero outputs with avoid_zero={:}'.format(avoid_zero)) break else: break return nodes[-1] # joint def forward_joint(self, inputs, weightss): nodes = [inputs] for i in range(1, self.max_nodes): inter_nodes = [] for j in range(i): node_str = '{:}<-{:}'.format(i, j) weights = weightss[ self.edge2index[node_str] ] aggregation = sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) / weights.numel() inter_nodes.append( aggregation ) nodes.append( sum(inter_nodes) ) return nodes[-1] # uniform random sampling per iteration def forward_urs(self, inputs): nodes = [inputs] for i in range(1, self.max_nodes): while True: # to avoid select zero for all ops sops, has_non_zero = [], False for j in range(i): node_str = '{:}<-{:}'.format(i, j) candidates = self.edges[node_str] select_op = random.choice(candidates) sops.append( select_op ) if not hasattr(select_op, 'is_zero') or select_op.is_zero == False: has_non_zero=True if has_non_zero: break inter_nodes = [] for j, select_op in enumerate(sops): inter_nodes.append( select_op(nodes[j]) ) nodes.append( sum(inter_nodes) ) return nodes[-1] # select the argmax def forward_select(self, inputs, weightss): nodes = [inputs] for i in range(1, self.max_nodes): inter_nodes = [] for j in range(i): node_str = '{:}<-{:}'.format(i, j) weights = weightss[ self.edge2index[node_str] ] inter_nodes.append( self.edges[node_str][ weights.argmax().item() ]( nodes[j] ) ) #inter_nodes.append( sum( layer(nodes[j]) * w for layer, w in zip(self.edges[node_str], weights) ) ) nodes.append( sum(inter_nodes) ) return nodes[-1] # forward with a specific structure def forward_dynamic(self, inputs, structure): nodes = [inputs] for i in range(1, self.max_nodes): cur_op_node = structure.nodes[i-1] inter_nodes = [] for op_name, j in cur_op_node: node_str = '{:}<-{:}'.format(i, j) op_index = self.op_names.index( op_name ) inter_nodes.append( self.edges[node_str][op_index]( nodes[j] ) ) nodes.append( sum(inter_nodes) ) return nodes[-1]