########################################################################### # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # ########################################################################### import torch import torch.nn as nn from copy import deepcopy from models.cell_searchs.search_cells import NASNetSearchCell as SearchCell from models.cell_operations import RAW_OP_CLASSES # The macro structure is based on NASNet class NASNetworkGDAS_FRC(nn.Module): def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats): super(NASNetworkGDAS_FRC, self).__init__() self._C = C self._layerN = N self._steps = steps self._multiplier = multiplier self.stem = nn.Sequential( nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C*stem_multiplier)) # config for each layer layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1) layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1) num_edge, edge2index = None, None C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False self.cells = nn.ModuleList() for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): if reduction: cell = RAW_OP_CLASSES['gdas_reduction'](C_prev_prev, C_prev, C_curr, reduction_prev, affine, track_running_stats) else: cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats) if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index else: assert reduction or num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) self.cells.append( cell ) C_prev_prev, C_prev, reduction_prev = C_prev, cell.multiplier * C_curr, reduction self.op_names = deepcopy( search_space ) self._Layer = len(self.cells) self.edge2index = edge2index self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True)) self.global_pooling = nn.AdaptiveAvgPool2d(1) self.classifier = nn.Linear(C_prev, num_classes) self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) self.tau = 10 def get_weights(self): xlist = list( self.stem.parameters() ) + list( self.cells.parameters() ) xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() ) xlist+= list( self.classifier.parameters() ) return xlist def set_tau(self, tau): self.tau = tau def get_tau(self): return self.tau def get_alphas(self): return [self.arch_parameters] def show_alphas(self): with torch.no_grad(): A = 'arch-normal-parameters :\n{:}'.format(nn.functional.softmax(self.arch_parameters, dim=-1).cpu()) return '{:}'.format(A) def get_message(self): string = self.extra_repr() for i, cell in enumerate(self.cells): string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr()) return string def extra_repr(self): return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__)) def genotype(self): def _parse(weights): gene = [] for i in range(self._steps): edges = [] for j in range(2+i): node_str = '{:}<-{:}'.format(i, j) ws = weights[ self.edge2index[node_str] ] for k, op_name in enumerate(self.op_names): if op_name == 'none': continue edges.append( (op_name, j, ws[k]) ) edges = sorted(edges, key=lambda x: -x[-1]) selected_edges = edges[:2] gene.append( tuple(selected_edges) ) return gene with torch.no_grad(): gene_normal = _parse(torch.softmax(self.arch_parameters, dim=-1).cpu().numpy()) return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2))} def forward(self, inputs): def get_gumbel_prob(xins): while True: gumbels = -torch.empty_like(xins).exponential_().log() logits = (xins.log_softmax(dim=1) + gumbels) / self.tau probs = nn.functional.softmax(logits, dim=1) index = probs.max(-1, keepdim=True)[1] one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0) hardwts = one_h - probs.detach() + probs if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()): continue else: break return hardwts, index hardwts, index = get_gumbel_prob(self.arch_parameters) s0 = s1 = self.stem(inputs) for i, cell in enumerate(self.cells): if cell.reduction: s0, s1 = s1, cell(s0, s1) else: s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index) out = self.lastact(s1) out = self.global_pooling( out ) out = out.view(out.size(0), -1) logits = self.classifier(out) return out, logits