##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # ##################################################### # python exps/LFNA/lfna-ttss-hpnet.py --env_version v1 --hidden_dim 16 ##################################################### import sys, time, copy, torch, random, argparse from tqdm import tqdm from copy import deepcopy from pathlib import Path lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint from log_utils import time_string from log_utils import AverageMeter, convert_secs2time from utils import split_str2indexes from procedures.advanced_main import basic_train_fn, basic_eval_fn from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric from datasets.synthetic_core import get_synthetic_env from models.xcore import get_model from xlayers import super_core from lfna_utils import lfna_setup, train_model, TimeData from lfna_models import HyperNet_VX as HyperNet def main(args): logger, env_info, model_kwargs = lfna_setup(args) dynamic_env = env_info["dynamic_env"] model = get_model(**model_kwargs) total_time = env_info["total"] for i in range(total_time): for xkey in ("timestamp", "x", "y"): nkey = "{:}-{:}".format(i, xkey) assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys())) train_time_bar = total_time // 2 criterion = torch.nn.MSELoss() logger.log("There are {:} weights.".format(model.get_w_container().numel())) # pre-train the model dataset = init_dataset = TimeData(0, env_info["0-x"], env_info["0-y"]) shape_container = model.get_w_container().to_shape_container() hypernet = HyperNet(shape_container, 16) print(hypernet) optimizer = torch.optim.Adam(hypernet.parameters(), lr=args.init_lr, amsgrad=True) best_loss, best_param = None, None for _iepoch in range(args.epochs): container = hypernet(None) preds = model.forward_with_container(dataset.x, container) optimizer.zero_grad() loss = criterion(preds, dataset.y) loss.backward() optimizer.step() # save best if best_loss is None or best_loss > loss.item(): best_loss = loss.item() best_param = copy.deepcopy(model.state_dict()) print("hyper-net : best={:.4f}".format(best_loss)) init_loss = train_model(model, init_dataset, args.init_lr, args.epochs) logger.log("The pre-training loss is {:.4f}".format(init_loss)) print(model) print(hypernet) logger.log("-" * 200 + "\n") logger.close() if __name__ == "__main__": parser = argparse.ArgumentParser("Use the data in the past.") parser.add_argument( "--save_dir", type=str, default="./outputs/lfna-synthetic/lfna-debug", help="The checkpoint directory.", ) parser.add_argument( "--env_version", type=str, required=True, help="The synthetic enviornment version.", ) parser.add_argument( "--hidden_dim", type=int, required=True, help="The hidden dimension.", ) ##### parser.add_argument( "--init_lr", type=float, default=0.1, help="The initial learning rate for the optimizer (default is Adam)", ) parser.add_argument( "--meta_batch", type=int, default=32, help="The batch size for the meta-model", ) parser.add_argument( "--meta_seq", type=int, default=10, help="The length of the sequence for meta-model.", ) parser.add_argument( "--epochs", type=int, default=2000, help="The total number of epochs.", ) # Random Seed parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") args = parser.parse_args() if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) assert args.save_dir is not None, "The save dir argument can not be None" args.save_dir = "{:}-{:}-d{:}".format( args.save_dir, args.env_version, args.hidden_dim ) main(args)