############################################################################################## # This code is copied and modified from Hanxiao Liu's work (https://github.com/quark0/darts) # ############################################################################################## import torch import torch.nn as nn OPS = { 'none' : lambda C_in, C_out, stride, affine: Zero(stride), 'avg_pool_3x3' : lambda C_in, C_out, stride, affine: POOLING(C_in, C_out, stride, 'avg'), 'max_pool_3x3' : lambda C_in, C_out, stride, affine: POOLING(C_in, C_out, stride, 'max'), 'nor_conv_7x7' : lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, (7,7), (stride,stride), (3,3), affine), 'nor_conv_3x3' : lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, (3,3), (stride,stride), (1,1), affine), 'nor_conv_1x1' : lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, (1,1), (stride,stride), (0,0), affine), 'skip_connect' : lambda C_in, C_out, stride, affine: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine), 'sep_conv_3x3' : lambda C_in, C_out, stride, affine: SepConv(C_in, C_out, 3, stride, 1, affine=affine), 'sep_conv_5x5' : lambda C_in, C_out, stride, affine: SepConv(C_in, C_out, 5, stride, 2, affine=affine), 'sep_conv_7x7' : lambda C_in, C_out, stride, affine: SepConv(C_in, C_out, 7, stride, 3, affine=affine), 'dil_conv_3x3' : lambda C_in, C_out, stride, affine: DilConv(C_in, C_out, 3, stride, 2, 2, affine=affine), 'dil_conv_5x5' : lambda C_in, C_out, stride, affine: DilConv(C_in, C_out, 5, stride, 4, 2, affine=affine), 'conv_7x1_1x7' : lambda C_in, C_out, stride, affine: Conv717(C_in, C_out, stride, affine), 'conv_3x1_1x3' : lambda C_in, C_out, stride, affine: Conv313(C_in, C_out, stride, affine) } class POOLING(nn.Module): def __init__(self, C_in, C_out, stride, mode): super(POOLING, self).__init__() if C_in == C_out: self.preprocess = None else: self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0) if mode == 'avg' : self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) elif mode == 'max': self.op = nn.MaxPool2d(3, stride=stride, padding=1) def forward(self, inputs): if self.preprocess is not None: x = self.preprocess(inputs) else: x = inputs return self.op(x) class Conv313(nn.Module): def __init__(self, C_in, C_out, stride, affine): super(Conv313, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in , C_out, (1,3), stride=(1, stride), padding=(0, 1), bias=False), nn.Conv2d(C_out, C_out, (3,1), stride=(stride, 1), padding=(1, 0), bias=False), nn.BatchNorm2d(C_out, affine=affine) ) def forward(self, x): return self.op(x) class Conv717(nn.Module): def __init__(self, C_in, C_out, stride, affine): super(Conv717, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in , C_out, (1,7), stride=(1, stride), padding=(0, 3), bias=False), nn.Conv2d(C_out, C_out, (7,1), stride=(stride, 1), padding=(3, 0), bias=False), nn.BatchNorm2d(C_out, affine=affine) ) def forward(self, x): return self.op(x) class ReLUConvBN(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True): super(ReLUConvBN, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, bias=False), nn.BatchNorm2d(C_out, affine=affine) ) def forward(self, x): return self.op(x) class DilConv(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True): super(DilConv, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False), nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), nn.BatchNorm2d(C_out, affine=affine), ) def forward(self, x): return self.op(x) class SepConv(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True): super(SepConv, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, groups=C_in, bias=False), nn.Conv2d(C_in, C_in, kernel_size=1, padding=0, bias=False), nn.BatchNorm2d(C_in, affine=affine), nn.ReLU(inplace=False), nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride= 1, padding=padding, groups=C_in, bias=False), nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), nn.BatchNorm2d(C_out, affine=affine), ) def forward(self, x): return self.op(x) class Identity(nn.Module): def __init__(self): super(Identity, self).__init__() def forward(self, x): return x class Zero(nn.Module): def __init__(self, stride): super(Zero, self).__init__() self.stride = stride def forward(self, x): if self.stride == 1: return x.mul(0.) return x[:,:,::self.stride,::self.stride].mul(0.) def extra_repr(self): return 'stride={stride}'.format(**self.__dict__) class FactorizedReduce(nn.Module): def __init__(self, C_in, C_out, stride, affine=True): super(FactorizedReduce, self).__init__() self.stride = stride self.C_in = C_in self.C_out = C_out self.relu = nn.ReLU(inplace=False) if stride == 2: #assert C_out % 2 == 0, 'C_out : {:}'.format(C_out) C_outs = [C_out // 2, C_out - C_out // 2] self.convs = nn.ModuleList() for i in range(2): self.convs.append( nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=False) ) self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0) elif stride == 4: assert C_out % 4 == 0, 'C_out : {:}'.format(C_out) self.convs = nn.ModuleList() for i in range(4): self.convs.append( nn.Conv2d(C_in, C_out // 4, 1, stride=stride, padding=0, bias=False) ) self.pad = nn.ConstantPad2d((0, 3, 0, 3), 0) else: raise ValueError('Invalid stride : {:}'.format(stride)) self.bn = nn.BatchNorm2d(C_out, affine=affine) def forward(self, x): x = self.relu(x) y = self.pad(x) if self.stride == 2: out = torch.cat([self.convs[0](x), self.convs[1](y[:,:,1:,1:])], dim=1) else: out = torch.cat([self.convs[0](x), self.convs[1](y[:,:,1:-2,1:-2]), self.convs[2](y[:,:,2:-1,2:-1]), self.convs[3](y[:,:,3:,3:])], dim=1) out = self.bn(out) return out def extra_repr(self): return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__)