##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # ##################################################### import math import abc import copy import numpy as np from typing import Optional import torch import torch.utils.data as data from .math_base_funcs import FitFunc class DynamicFunc(FitFunc): """The dynamic quadratic function, where each param is a function.""" def __init__(self, freedom: int, params=None): super(DynamicFunc, self).__init__(freedom, None, params) self._timestamp = None def __call__(self, x, timestamp=None): raise NotImplementedError def _getitem(self, x, weights): raise NotImplementedError def set_timestamp(self, timestamp): self._timestamp = timestamp def noise_call(self, x, timestamp=None, std=0.1): clean_y = self.__call__(x, timestamp) if isinstance(clean_y, np.ndarray): noise_y = clean_y + np.random.normal(scale=std, size=clean_y.shape) else: raise ValueError("Unkonwn type: {:}".format(type(clean_y))) return noise_y class DynamicLinearFunc(DynamicFunc): """The dynamic linear function that outputs f(x) = a * x + b. The a and b is a function of timestamp. """ def __init__(self, params=None): super(DynamicLinearFunc, self).__init__(3, params) def __call__(self, x, timestamp=None): self.check_valid() if timestamp is None: timestamp = self._timestamp a = self._params[0](timestamp) b = self._params[1](timestamp) convert_fn = lambda x: x[-1] if isinstance(x, (tuple, list)) else x a, b = convert_fn(a), convert_fn(b) return a * x + b def __repr__(self): return "{name}({a} * x + {b}, timestamp={timestamp})".format( name=self.__class__.__name__, a=self._params[0], b=self._params[1], timestamp=self._timestamp, ) class DynamicQuadraticFunc(DynamicFunc): """The dynamic quadratic function that outputs f(x) = a * x^2 + b * x + c. The a, b, and c is a function of timestamp. """ def __init__(self, params=None): super(DynamicQuadraticFunc, self).__init__(3, params) def __call__(self, x, timestamp=None): self.check_valid() if timestamp is None: timestamp = self._timestamp a = self._params[0](timestamp) b = self._params[1](timestamp) c = self._params[2](timestamp) convert_fn = lambda x: x[-1] if isinstance(x, (tuple, list)) else x a, b, c = convert_fn(a), convert_fn(b), convert_fn(c) return a * x * x + b * x + c def __repr__(self): return "{name}({a} * x^2 + {b} * x + {c}, timestamp={timestamp})".format( name=self.__class__.__name__, a=self._params[0], b=self._params[1], c=self._params[2], timestamp=self._timestamp, )