##################################################### # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # ##################################################### # pytest ./tests/test_super_att.py -s # ##################################################### import sys, random import unittest from parameterized import parameterized import pytest from pathlib import Path lib_dir = (Path(__file__).parent / ".." / "lib").resolve() print("library path: {:}".format(lib_dir)) if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) import torch from xlayers import super_core import spaces class TestSuperAttention(unittest.TestCase): """Test the super attention layer.""" def _internal_func(self, inputs, model): outputs = model(inputs) abstract_space = model.abstract_search_space print( "The abstract search space for SuperAttention is:\n{:}".format( abstract_space ) ) abstract_space.clean_last() abstract_child = abstract_space.random(reuse_last=True) print("The abstract child program is:\n{:}".format(abstract_child)) model.set_super_run_type(super_core.SuperRunMode.Candidate) model.apply_candidate(abstract_child) outputs = model(inputs) return abstract_child, outputs def test_super_attention(self): proj_dim = spaces.Categorical(12, 24, 36) num_heads = spaces.Categorical(2, 4, 6) model = super_core.SuperAttention(10, proj_dim, num_heads) print(model) model.apply_verbose(True) inputs = torch.rand(4, 20, 10) # batch size, sequence length, channel abstract_child, outputs = self._internal_func(inputs, model) output_shape = (4, 20, abstract_child["proj"]["_out_features"].value) self.assertEqual(tuple(outputs.shape), output_shape) @parameterized.expand([[6], [12], [24], [48]]) def test_transformer_encoder(self, input_dim): output_dim = spaces.Categorical(12, 24, 36) model = super_core.SuperSequential( super_core.SuperLinear(input_dim, output_dim), super_core.SuperTransformerEncoderLayer( output_dim, num_heads=spaces.Categorical(2, 4, 6), mlp_hidden_multiplier=spaces.Categorical(1, 2, 4), ), ) print(model) model.apply_verbose(True) inputs = torch.rand(4, 20, input_dim) abstract_child, outputs = self._internal_func(inputs, model) output_shape = ( 4, 20, output_dim.abstract(reuse_last=True).random(reuse_last=True).value, ) self.assertEqual(tuple(outputs.shape), output_shape)