################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 # ################################################## from __future__ import division from __future__ import print_function import os import numpy as np import pandas as pd import copy from functools import partial from sklearn.metrics import roc_auc_score, mean_squared_error from typing import Optional import logging from qlib.utils import ( unpack_archive_with_buffer, save_multiple_parts_file, create_save_path, drop_nan_by_y_index, ) from qlib.log import get_module_logger, TimeInspector import torch import torch.nn as nn import torch.optim as optim import layers as xlayers from qlib.model.base import Model from qlib.data.dataset import DatasetH from qlib.data.dataset.handler import DataHandlerLP class QuantTransformer(Model): """Transformer-based Quant Model """ def __init__( self, d_feat=6, hidden_size=64, num_layers=2, dropout=0.0, n_epochs=200, lr=0.001, metric="", batch_size=2000, early_stop=20, loss="mse", optimizer="adam", GPU=0, seed=None, **kwargs ): # Set logger. self.logger = get_module_logger("QuantTransformer") self.logger.info("QuantTransformer pytorch version...") # set hyper-parameters. self.d_feat = d_feat self.hidden_size = hidden_size self.num_layers = num_layers self.dropout = dropout self.n_epochs = n_epochs self.lr = lr self.metric = metric self.batch_size = batch_size self.early_stop = early_stop self.optimizer = optimizer.lower() self.loss = loss self.device = torch.device("cuda:{:}".format(GPU) if torch.cuda.is_available() else "cpu") self.use_gpu = torch.cuda.is_available() self.seed = seed self.logger.info( "GRU parameters setting:" "\nd_feat : {}" "\nhidden_size : {}" "\nnum_layers : {}" "\ndropout : {}" "\nn_epochs : {}" "\nlr : {}" "\nmetric : {}" "\nbatch_size : {}" "\nearly_stop : {}" "\noptimizer : {}" "\nloss_type : {}" "\nvisible_GPU : {}" "\nuse_GPU : {}" "\nseed : {}".format( d_feat, hidden_size, num_layers, dropout, n_epochs, lr, metric, batch_size, early_stop, optimizer.lower(), loss, GPU, self.use_gpu, seed, ) ) if self.seed is not None: np.random.seed(self.seed) torch.manual_seed(self.seed) self.model = TransformerModel(d_feat=self.d_feat) if optimizer.lower() == "adam": self.train_optimizer = optim.Adam(self.model.parameters(), lr=self.lr) elif optimizer.lower() == "gd": self.train_optimizer = optim.SGD(self.model.parameters(), lr=self.lr) else: raise NotImplementedError("optimizer {:} is not supported!".format(optimizer)) self.fitted = False self.model.to(self.device) def mse(self, pred, label): loss = (pred - label) ** 2 return torch.mean(loss) def loss_fn(self, pred, label): mask = ~torch.isnan(label) if self.loss == "mse": return self.mse(pred[mask], label[mask]) raise ValueError("unknown loss `%s`" % self.loss) def metric_fn(self, pred, label): mask = torch.isfinite(label) if self.metric == "" or self.metric == "loss": return -self.loss_fn(pred[mask], label[mask]) raise ValueError("unknown metric `%s`" % self.metric) def train_epoch(self, x_train, y_train): x_train_values = x_train.values y_train_values = np.squeeze(y_train.values) self.model.train() indices = np.arange(len(x_train_values)) np.random.shuffle(indices) for i in range(len(indices))[:: self.batch_size]: if len(indices) - i < self.batch_size: break feature = torch.from_numpy(x_train_values[indices[i : i + self.batch_size]]).float().to(self.device) label = torch.from_numpy(y_train_values[indices[i : i + self.batch_size]]).float().to(self.device) pred = self.model(feature) loss = self.loss_fn(pred, label) self.train_optimizer.zero_grad() loss.backward() torch.nn.utils.clip_grad_value_(self.model.parameters(), 3.0) self.train_optimizer.step() def test_epoch(self, data_x, data_y): # prepare training data x_values = data_x.values y_values = np.squeeze(data_y.values) self.model.eval() scores = [] losses = [] indices = np.arange(len(x_values)) for i in range(len(indices))[:: self.batch_size]: if len(indices) - i < self.batch_size: break feature = torch.from_numpy(x_values[indices[i : i + self.batch_size]]).float().to(self.device) label = torch.from_numpy(y_values[indices[i : i + self.batch_size]]).float().to(self.device) pred = self.model(feature) loss = self.loss_fn(pred, label) losses.append(loss.item()) score = self.metric_fn(pred, label) scores.append(score.item()) return np.mean(losses), np.mean(scores) def fit( self, dataset: DatasetH, evals_result=dict(), verbose=True, save_path=None, ): df_train, df_valid, df_test = dataset.prepare( ["train", "valid", "test"], col_set=["feature", "label"], data_key=DataHandlerLP.DK_L, ) x_train, y_train = df_train["feature"], df_train["label"] x_valid, y_valid = df_valid["feature"], df_valid["label"] if save_path == None: save_path = create_save_path(save_path) stop_steps = 0 train_loss = 0 best_score = -np.inf best_epoch = 0 evals_result["train"] = [] evals_result["valid"] = [] # train self.logger.info("training...") self.fitted = True for step in range(self.n_epochs): self.logger.info("Epoch%d:", step) self.logger.info("training...") self.train_epoch(x_train, y_train) self.logger.info("evaluating...") train_loss, train_score = self.test_epoch(x_train, y_train) val_loss, val_score = self.test_epoch(x_valid, y_valid) self.logger.info("train %.6f, valid %.6f" % (train_score, val_score)) evals_result["train"].append(train_score) evals_result["valid"].append(val_score) if val_score > best_score: best_score = val_score stop_steps = 0 best_epoch = step best_param = copy.deepcopy(self.model.state_dict()) else: stop_steps += 1 if stop_steps >= self.early_stop: self.logger.info("early stop") break self.logger.info("best score: %.6lf @ %d" % (best_score, best_epoch)) self.model.load_state_dict(best_param) torch.save(best_param, save_path) if self.use_gpu: torch.cuda.empty_cache() def predict(self, dataset): if not self.fitted: raise ValueError("model is not fitted yet!") x_test = dataset.prepare("test", col_set="feature") index = x_test.index self.model.eval() x_values = x_test.values sample_num = x_values.shape[0] preds = [] for begin in range(sample_num)[:: self.batch_size]: if sample_num - begin < self.batch_size: end = sample_num else: end = begin + self.batch_size x_batch = torch.from_numpy(x_values[begin:end]).float().to(self.device) with torch.no_grad(): if self.use_gpu: pred = self.model(x_batch).detach().cpu().numpy() else: pred = self.model(x_batch).detach().numpy() preds.append(pred) return pd.Series(np.concatenate(preds), index=index) # Real Model class MLP(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super(MLP, self).__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super(Attention, self).__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super(Block, self).__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) def forward(self, x): x = x + self.drop_path(self.attn(self.norm1(x))) x = x + self.drop_path(self.mlp(self.norm2(x))) return x class SimpleEmbed(nn.Module): def __init__(self, d_feat, embed_dim): super(SimpleEmbed, self).__init__() self.d_feat = d_feat self.proj = nn.Linear(d_feat, embed_dim) def forward(self, x): x = x.reshape(len(x), self.d_feat, -1) # [N, F*T] -> [N, F, T] x = x.permute(0, 2, 1) # [N, F, T] -> [N, T, F] out = self.proj(x) return out class TransformerModel(nn.Module): def __init__(self, d_feat: int, embed_dim: int = 64, depth: int = 4, num_heads: int = 4, mlp_ratio: float = 4., qkv_bias: bool = True, qk_scale: Optional[float] = None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None): """ Args: d_feat (int, tuple): input image size embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True qk_scale (float): override default qk scale of head_dim ** -0.5 if set drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate norm_layer: (nn.Module): normalization layer """ super(TransformerModel, self).__init__() self.embed_dim = embed_dim self.num_features = embed_dim norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim) self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer) for i in range(depth)]) self.norm = norm_layer(embed_dim) # regression head self.head = nn.Linear(self.num_features, 1) xlayers.trunc_normal_(self.cls_token, std=.02) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): xlayers.trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def forward_features(self, x): batch, flatten_size = x.shape feats = self.input_embed(x) # batch * 60 * 64 cls_tokens = self.cls_token.expand(batch, -1, -1) # stole cls_tokens impl from Phil Wang, thanks feats_w_ct = torch.cat((cls_tokens, feats), dim=1) feats_w_tp = self.pos_embed(feats_w_ct) feats_w_tp = self.pos_drop(feats_w_tp) xfeats = feats_w_tp for block in self.blocks: xfeats = block(xfeats) xfeats = self.norm(xfeats)[:, 0] return xfeats def forward(self, x): feats = self.forward_features(x) predicts = self.head(feats).squeeze(-1) return predicts