############################################################################## # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # ############################################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 # ############################################################################## # This file is used to re-orangize all checkpoints (created by main-tss.py) # # into a single benchmark file. Besides, for each trial, we will merge the # # information of all its trials into a single file. # # # # Usage: # # python exps/NATS-Bench/tss-collect-patcher.py # ############################################################################## import os, re, sys, time, shutil, random, argparse, collections import numpy as np from copy import deepcopy import torch from tqdm import tqdm from pathlib import Path from collections import defaultdict, OrderedDict from typing import Dict, Any, Text, List lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) from log_utils import AverageMeter, time_string, convert_secs2time from config_utils import load_config, dict2config from datasets import get_datasets from models import CellStructure, get_cell_based_tiny_net, get_search_spaces from nats_bench import pickle_save, pickle_load, ArchResults, ResultsCount from procedures import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders from utils import get_md5_file from nas_201_api import NASBench201API NATS_TSS_BASE_NAME = 'NATS-tss-v1_0' # 2020.08.28 def simplify(save_dir, save_name, nets, total, sup_config): hps, seeds = ['12', '200'], set() for hp in hps: sub_save_dir = save_dir / 'raw-data-{:}'.format(hp) ckps = sorted(list(sub_save_dir.glob('arch-*-seed-*.pth'))) seed2names = defaultdict(list) for ckp in ckps: parts = re.split('-|\.', ckp.name) seed2names[parts[3]].append(ckp.name) print('DIR : {:}'.format(sub_save_dir)) nums = [] for seed, xlist in seed2names.items(): seeds.add(seed) nums.append(len(xlist)) print(' [seed={:}] there are {:} checkpoints.'.format(seed, len(xlist))) assert len(nets) == total == max(nums), 'there are some missed files : {:} vs {:}'.format(max(nums), total) print('{:} start simplify the checkpoint.'.format(time_string())) datasets = ('cifar10-valid', 'cifar10', 'cifar100', 'ImageNet16-120') # Create the directory to save the processed data # full_save_dir contains all benchmark files with trained weights. # simplify_save_dir contains all benchmark files without trained weights. full_save_dir = save_dir / (save_name + '-FULL') simple_save_dir = save_dir / (save_name + '-SIMPLIFY') full_save_dir.mkdir(parents=True, exist_ok=True) simple_save_dir.mkdir(parents=True, exist_ok=True) # all data in memory arch2infos, evaluated_indexes = dict(), set() end_time, arch_time = time.time(), AverageMeter() # save the meta information for index in tqdm(range(total)): arch_str = nets[index] hp2info = OrderedDict() simple_save_path = simple_save_dir / '{:06d}.pickle'.format(index) arch2infos[index] = pickle_load(simple_save_path) evaluated_indexes.add(index) # measure elapsed time arch_time.update(time.time() - end_time) end_time = time.time() need_time = '{:}'.format(convert_secs2time(arch_time.avg * (total-index-1), True)) # print('{:} {:06d}/{:06d} : still need {:}'.format(time_string(), index, total, need_time)) print('{:} {:} done.'.format(time_string(), save_name)) final_infos = {'meta_archs' : nets, 'total_archs': total, 'arch2infos' : arch2infos, 'evaluated_indexes': evaluated_indexes} save_file_name = save_dir / '{:}.pickle'.format(save_name) pickle_save(final_infos, str(save_file_name)) # move the benchmark file to a new path hd5sum = get_md5_file(str(save_file_name) + '.pbz2') hd5_file_name = save_dir / '{:}-{:}.pickle.pbz2'.format(NATS_TSS_BASE_NAME, hd5sum) shutil.move(str(save_file_name) + '.pbz2', hd5_file_name) print('Save {:} / {:} architecture results into {:} -> {:}.'.format(len(evaluated_indexes), total, save_file_name, hd5_file_name)) # move the directory to a new path hd5_full_save_dir = save_dir / '{:}-{:}-full'.format(NATS_TSS_BASE_NAME, hd5sum) hd5_simple_save_dir = save_dir / '{:}-{:}-simple'.format(NATS_TSS_BASE_NAME, hd5sum) shutil.move(full_save_dir, hd5_full_save_dir) shutil.move(simple_save_dir, hd5_simple_save_dir) def traverse_net(max_node): aa_nas_bench_ss = get_search_spaces('cell', 'nats-bench') archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False) print ('There are {:} archs vs {:}.'.format(len(archs), len(aa_nas_bench_ss) ** ((max_node-1)*max_node/2))) random.seed( 88 ) # please do not change this line for reproducibility random.shuffle( archs ) assert archs[0 ].tostr() == '|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|', 'please check the 0-th architecture : {:}'.format(archs[0]) assert archs[9 ].tostr() == '|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|', 'please check the 9-th architecture : {:}'.format(archs[9]) assert archs[123].tostr() == '|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|', 'please check the 123-th architecture : {:}'.format(archs[123]) return [x.tostr() for x in archs] if __name__ == '__main__': parser = argparse.ArgumentParser(description='NATS-Bench (topology search space)', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--base_save_dir', type=str, default='./output/NATS-Bench-topology', help='The base-name of folder to save checkpoints and log.') parser.add_argument('--max_node' , type=int, default=4, help='The maximum node in a cell.') parser.add_argument('--channel' , type=int, default=16, help='The number of channels.') parser.add_argument('--num_cells' , type=int, default=5, help='The number of cells in one stage.') parser.add_argument('--check_N' , type=int, default=15625, help='For safety.') parser.add_argument('--save_name' , type=str, default='process', help='The save directory.') args = parser.parse_args() nets = traverse_net(args.max_node) if len(nets) != args.check_N: raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N)) save_dir = Path(args.base_save_dir) simplify(save_dir, args.save_name, nets, args.check_N, {'name': 'infer.tiny', 'channel': args.channel, 'num_cells': args.num_cells})