import torch
import torch.nn as nn
import torch.nn.functional as F
from .initialization import initialize_resnet


class WideBasicblock(nn.Module):
  def __init__(self, inplanes, planes, stride, dropout=False):
    super(WideBasicblock, self).__init__()

    self.bn_a = nn.BatchNorm2d(inplanes)
    self.conv_a = nn.Conv2d(inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False)

    self.bn_b = nn.BatchNorm2d(planes)
    if dropout:
      self.dropout = nn.Dropout2d(p=0.5, inplace=True)
    else:
      self.dropout = None
    self.conv_b = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)

    if inplanes != planes:
      self.downsample = nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, padding=0, bias=False)
    else:
      self.downsample = None

  def forward(self, x):

    basicblock = self.bn_a(x)
    basicblock = F.relu(basicblock)
    basicblock = self.conv_a(basicblock)

    basicblock = self.bn_b(basicblock)
    basicblock = F.relu(basicblock)
    if self.dropout is not None:
      basicblock = self.dropout(basicblock)
    basicblock = self.conv_b(basicblock)

    if self.downsample is not None:
      x = self.downsample(x)
    
    return x + basicblock


class CifarWideResNet(nn.Module):
  """
  ResNet optimized for the Cifar dataset, as specified in
  https://arxiv.org/abs/1512.03385.pdf
  """
  def __init__(self, depth, widen_factor, num_classes, dropout):
    super(CifarWideResNet, self).__init__()

    #Model type specifies number of layers for CIFAR-10 and CIFAR-100 model
    assert (depth - 4) % 6 == 0, 'depth should be one of 20, 32, 44, 56, 110'
    layer_blocks = (depth - 4) // 6
    print ('CifarPreResNet : Depth : {} , Layers for each block : {}'.format(depth, layer_blocks))

    self.num_classes = num_classes
    self.dropout = dropout
    self.conv_3x3 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1, bias=False)

    self.message  = 'Wide ResNet : depth={:}, widen_factor={:}, class={:}'.format(depth, widen_factor, num_classes)
    self.inplanes = 16
    self.stage_1 = self._make_layer(WideBasicblock, 16*widen_factor, layer_blocks, 1)
    self.stage_2 = self._make_layer(WideBasicblock, 32*widen_factor, layer_blocks, 2)
    self.stage_3 = self._make_layer(WideBasicblock, 64*widen_factor, layer_blocks, 2)
    self.lastact = nn.Sequential(nn.BatchNorm2d(64*widen_factor), nn.ReLU(inplace=True))
    self.avgpool = nn.AvgPool2d(8)
    self.classifier = nn.Linear(64*widen_factor, num_classes)

    self.apply(initialize_resnet)

  def get_message(self):
    return self.message

  def _make_layer(self, block, planes, blocks, stride):

    layers = []
    layers.append(block(self.inplanes, planes, stride, self.dropout))
    self.inplanes = planes
    for i in range(1, blocks):
      layers.append(block(self.inplanes, planes, 1, self.dropout))

    return nn.Sequential(*layers)

  def forward(self, x):
    x = self.conv_3x3(x)
    x = self.stage_1(x)
    x = self.stage_2(x)
    x = self.stage_3(x)
    x = self.lastact(x)
    x = self.avgpool(x)
    features = x.view(x.size(0), -1)
    outs     = self.classifier(features)
    return features, outs