#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
import torch
import torch.nn as nn
from copy import deepcopy
from .cells import NASNetInferCell as InferCell, AuxiliaryHeadCIFAR


# The macro structure is based on NASNet
class NASNetonCIFAR(nn.Module):

  def __init__(self, C, N, stem_multiplier, num_classes, genotype, auxiliary, affine=True, track_running_stats=True):
    super(NASNetonCIFAR, self).__init__()
    self._C        = C
    self._layerN   = N
    self.stem = nn.Sequential(
                    nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
                    nn.BatchNorm2d(C*stem_multiplier))
  
    # config for each layer
    layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * (N-1) + [C*4 ] + [C*4  ] * (N-1)
    layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)

    C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
    self.auxiliary_index = None
    self.auxiliary_head  = None
    self.cells = nn.ModuleList()
    for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
      cell = InferCell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
      self.cells.append( cell )
      C_prev_prev, C_prev, reduction_prev = C_prev, cell._multiplier*C_curr, reduction
      if reduction and C_curr == C*4 and auxiliary:
        self.auxiliary_head = AuxiliaryHeadCIFAR(C_prev, num_classes)
        self.auxiliary_index = index
    self._Layer     = len(self.cells)
    self.lastact    = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
    self.global_pooling = nn.AdaptiveAvgPool2d(1)
    self.classifier = nn.Linear(C_prev, num_classes)
    self.drop_path_prob = -1

  def update_drop_path(self, drop_path_prob):
    self.drop_path_prob = drop_path_prob

  def auxiliary_param(self):
    if self.auxiliary_head is None: return []
    else: return list( self.auxiliary_head.parameters() )

  def get_message(self):
    string = self.extra_repr()
    for i, cell in enumerate(self.cells):
      string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
    return string

  def extra_repr(self):
    return ('{name}(C={_C}, N={_layerN}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))

  def forward(self, inputs):
    stem_feature, logits_aux = self.stem(inputs), None
    cell_results = [stem_feature, stem_feature]
    for i, cell in enumerate(self.cells):
      cell_feature = cell(cell_results[-2], cell_results[-1], self.drop_path_prob)
      cell_results.append( cell_feature )
      if self.auxiliary_index is not None and i == self.auxiliary_index and self.training:
        logits_aux = self.auxiliary_head( cell_results[-1] )
    out = self.lastact(cell_results[-1])
    out = self.global_pooling( out )
    out = out.view(out.size(0), -1)
    logits = self.classifier(out)
    if logits_aux is None: return out, logits
    else: return out, [logits, logits_aux]