autodl-projects/lib/nats_bench/api_test.py
2020-12-20 00:50:55 +08:00

132 lines
6.0 KiB
Python

##############################################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.08 ##########################
##############################################################################
# NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size #
##############################################################################
# pytest --capture=tee-sys #
##############################################################################
"""This file is used to quickly test the API."""
import os
import pytest
import random
from nats_bench.api_size import NATSsize
from nats_bench.api_size import ALL_BASE_NAMES as sss_base_names
from nats_bench.api_topology import NATStopology
from nats_bench.api_topology import ALL_BASE_NAMES as tss_base_names
def get_fake_torch_home_dir():
print('This file is {:}'.format(os.path.abspath(__file__)))
print('The current directory is {:}'.format(os.path.abspath(os.getcwd())))
xname = 'FAKE_TORCH_HOME'
if xname in os.environ:
return os.environ['FAKE_TORCH_HOME']
else:
return os.path.join(os.path.dirname(os.path.abspath(__file__)), '..', 'fake_torch_dir')
class TestNATSBench(object):
def test_nats_bench_tss(self, benchmark_dir=None, fake_random=True):
if benchmark_dir is None:
benchmark_dir = os.path.join(get_fake_torch_home_dir(), sss_base_names[-1] + '-simple')
return _test_nats_bench(benchmark_dir, True, fake_random)
def test_nats_bench_sss(self, benchmark_dir=None, fake_random=True):
if benchmark_dir is None:
benchmark_dir = os.path.join(get_fake_torch_home_dir(), tss_base_names[-1] + '-simple')
return _test_nats_bench(benchmark_dir, False, fake_random)
def prepare_fake_tss(self):
print('')
tss_benchmark_dir = os.path.join(get_fake_torch_home_dir(), tss_base_names[-1] + '-simple')
api = NATStopology(tss_benchmark_dir, True, False)
return api
def test_01_th_issue(self):
# Link: https://github.com/D-X-Y/NATS-Bench/issues/1
api = self.prepare_fake_tss()
# The performance of 0-th architecture on CIFAR-10 (trained by 12 epochs)
info = api.get_more_info(0, 'cifar10', hp=12)
# First of all, the data split in NATS-Bench is different from that in the official CIFAR paper.
# In NATS-Bench, we split the original CIFAR-10 training set into two parts, i.e., a training set and a validation set.
# In the following, we will use the splits of NATS-Bench to explain.
print(info['comment'])
print('The loss on the training + validation sets of CIFAR-10: {:}'.format(info['train-loss']))
print('The total training time for 12 epochs on the training + validation sets of CIFAR-10: {:}'.format(info['train-all-time']))
print('The per-epoch training time on CIFAR-10: {:}'.format(info['train-per-time']))
print('The total evaluation time on the test set of CIFAR-10 for 12 times: {:}'.format(info['test-all-time']))
print('The evaluation time on the test set of CIFAR-10: {:}'.format(info['test-per-time']))
cost_info = api.get_cost_info(0, 'cifar10')
xkeys = ['T-train@epoch', # The per epoch training time on the training + validation sets of CIFAR-10.
'T-train@total',
'T-ori-test@epoch', # The time cost for the evaluation on CIFAR-10 test set.
'T-ori-test@total'] # T-ori-test@epoch * 12 times.
for xkey in xkeys:
print('The cost info [{:}] for 0-th architecture on CIFAR-10 is {:}'.format(xkey, cost_info[xkey]))
def test_02_th_issue(self):
# https://github.com/D-X-Y/NATS-Bench/issues/2
api = self.prepare_fake_tss()
data = api.query_by_index(284, dataname='cifar10', hp=200)
for xkey, xvalue in data.items():
print('{:} : {:}'.format(xkey, xvalue))
xinfo = data[777].get_train()
print(xinfo)
print(data[777].train_acc1es)
info_012_epochs = api.get_more_info(284, 'cifar10', hp= 12)
print('Train accuracy for 12 epochs is {:}'.format(info_012_epochs['train-accuracy']))
info_200_epochs = api.get_more_info(284, 'cifar10', hp=200)
print('Train accuracy for 200 epochs is {:}'.format(info_200_epochs['train-accuracy']))
def _test_nats_bench(benchmark_dir, is_tss, fake_random, verbose=False):
"""The main test entry for NATS-Bench."""
if is_tss:
api = NATStopology(benchmark_dir, True, verbose)
else:
api = NATSsize(benchmark_dir, True, verbose)
if fake_random:
test_indexes = [0, 11, 284]
else:
test_indexes = [random.randint(0, len(api) - 1) for _ in range(10)]
key2dataset = {'cifar10': 'CIFAR-10',
'cifar100': 'CIFAR-100',
'ImageNet16-120': 'ImageNet16-120'}
for index in test_indexes:
print('\n\nEvaluate the {:5d}-th architecture.'.format(index))
for key, dataset in key2dataset.items():
# Query the loss / accuracy / time for the `index`-th candidate
# architecture on CIFAR-10
# info is a dict, where you can easily figure out the meaning by key
info = api.get_more_info(index, key)
print(' -->> The performance on {:}: {:}'.format(dataset, info))
# Query the flops, params, latency. info is a dict.
info = api.get_cost_info(index, key)
print(' -->> The cost info on {:}: {:}'.format(dataset, info))
# Simulate the training of the `index`-th candidate:
validation_accuracy, latency, time_cost, current_total_time_cost = api.simulate_train_eval(
index, dataset=key, hp='12')
print(' -->> The validation accuracy={:}, latency={:}, '
'the current time cost={:} s, accumulated time cost={:} s'
.format(validation_accuracy, latency, time_cost,
current_total_time_cost))
# Print the configuration of the `index`-th architecture on CIFAR-10
config = api.get_net_config(index, key)
print(' -->> The configuration on {:} is {:}'.format(dataset, config))
# Show the information of the `index`-th architecture
api.show(index)
with pytest.raises(ValueError):
api.get_more_info(100000, 'cifar10')