autodl-projects/exps/LFNA/vis-synthetic.py

363 lines
13 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
############################################################################
# python exps/LFNA/vis-synthetic.py #
############################################################################
import os, sys, copy, random
import torch
import numpy as np
import argparse
from collections import OrderedDict, defaultdict
from pathlib import Path
from tqdm import tqdm
from pprint import pprint
import matplotlib
from matplotlib import cm
matplotlib.use("agg")
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
from models.xcore import get_model
from datasets.synthetic_core import get_synthetic_env
from utils.temp_sync import optimize_fn, evaluate_fn
from procedures.metric_utils import MSEMetric
def plot_scatter(cur_ax, xs, ys, color, alpha, linewidths, label=None):
cur_ax.scatter([-100], [-100], color=color, linewidths=linewidths, label=label)
cur_ax.scatter(xs, ys, color=color, alpha=alpha, linewidths=1.5, label=None)
def draw_multi_fig(save_dir, timestamp, scatter_list, wh, fig_title=None):
save_path = save_dir / "{:04d}".format(timestamp)
# print('Plot the figure at timestamp-{:} into {:}'.format(timestamp, save_path))
dpi, width, height = 40, wh[0], wh[1]
figsize = width / float(dpi), height / float(dpi)
LabelSize, LegendFontsize, font_gap = 80, 80, 5
fig = plt.figure(figsize=figsize)
if fig_title is not None:
fig.suptitle(
fig_title, fontsize=LegendFontsize, fontweight="bold", x=0.5, y=0.92
)
for idx, scatter_dict in enumerate(scatter_list):
cur_ax = fig.add_subplot(len(scatter_list), 1, idx + 1)
plot_scatter(
cur_ax,
scatter_dict["xaxis"],
scatter_dict["yaxis"],
scatter_dict["color"],
scatter_dict["alpha"],
scatter_dict["linewidths"],
scatter_dict["label"],
)
cur_ax.set_xlabel("X", fontsize=LabelSize)
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
cur_ax.set_xlim(scatter_dict["xlim"][0], scatter_dict["xlim"][1])
cur_ax.set_ylim(scatter_dict["ylim"][0], scatter_dict["ylim"][1])
for tick in cur_ax.xaxis.get_major_ticks():
tick.label.set_fontsize(LabelSize - font_gap)
tick.label.set_rotation(10)
for tick in cur_ax.yaxis.get_major_ticks():
tick.label.set_fontsize(LabelSize - font_gap)
cur_ax.legend(loc=1, fontsize=LegendFontsize)
fig.savefig(str(save_path) + ".pdf", dpi=dpi, bbox_inches="tight", format="pdf")
fig.savefig(str(save_path) + ".png", dpi=dpi, bbox_inches="tight", format="png")
plt.close("all")
def find_min(cur, others):
if cur is None:
return float(others)
else:
return float(min(cur, others))
def find_max(cur, others):
if cur is None:
return float(others.max())
else:
return float(max(cur, others))
def compare_cl(save_dir):
save_dir = Path(str(save_dir))
save_dir.mkdir(parents=True, exist_ok=True)
dynamic_env, cl_function = create_example_v1(
# timestamp_config=dict(num=200, min_timestamp=-1, max_timestamp=1.0),
timestamp_config=dict(num=200),
num_per_task=1000,
)
models = dict()
cl_function.set_timestamp(0)
cl_xaxis_min = None
cl_xaxis_max = None
all_data = OrderedDict()
for idx, (timestamp, dataset) in enumerate(tqdm(dynamic_env, ncols=50)):
xaxis_all = dataset[0][:, 0].numpy()
yaxis_all = dataset[1][:, 0].numpy()
current_data = dict()
current_data["lfna_xaxis_all"] = xaxis_all
current_data["lfna_yaxis_all"] = yaxis_all
# compute cl-min
cl_xaxis_min = find_min(cl_xaxis_min, xaxis_all.mean() - xaxis_all.std())
cl_xaxis_max = find_max(cl_xaxis_max, xaxis_all.mean() + xaxis_all.std())
all_data[timestamp] = current_data
global_cl_xaxis_all = np.arange(cl_xaxis_min, cl_xaxis_max, step=0.1)
global_cl_yaxis_all = cl_function.noise_call(global_cl_xaxis_all)
for idx, (timestamp, xdata) in enumerate(tqdm(all_data.items(), ncols=50)):
scatter_list = []
scatter_list.append(
{
"xaxis": xdata["lfna_xaxis_all"],
"yaxis": xdata["lfna_yaxis_all"],
"color": "k",
"linewidths": 15,
"alpha": 0.99,
"xlim": (-6, 6),
"ylim": (-40, 40),
"label": "LFNA",
}
)
cur_cl_xaxis_min = cl_xaxis_min
cur_cl_xaxis_max = cl_xaxis_min + (cl_xaxis_max - cl_xaxis_min) * (
idx + 1
) / len(all_data)
cl_xaxis_all = np.arange(cur_cl_xaxis_min, cur_cl_xaxis_max, step=0.01)
cl_yaxis_all = cl_function.noise_call(cl_xaxis_all, std=0.2)
scatter_list.append(
{
"xaxis": cl_xaxis_all,
"yaxis": cl_yaxis_all,
"color": "k",
"linewidths": 15,
"xlim": (round(cl_xaxis_min, 1), round(cl_xaxis_max, 1)),
"ylim": (-20, 6),
"alpha": 0.99,
"label": "Continual Learning",
}
)
draw_multi_fig(
save_dir,
idx,
scatter_list,
wh=(2200, 1800),
fig_title="Timestamp={:03d}".format(idx),
)
print("Save all figures into {:}".format(save_dir))
save_dir = save_dir.resolve()
base_cmd = (
"ffmpeg -y -i {xdir}/%04d.png -vf fps=1 -vf scale=2200:1800 -vb 5000k".format(
xdir=save_dir
)
)
video_cmd = "{:} -pix_fmt yuv420p {xdir}/compare-cl.mp4".format(
base_cmd, xdir=save_dir
)
print(video_cmd + "\n")
os.system(video_cmd)
os.system(
"{:} -pix_fmt yuv420p {xdir}/compare-cl.webm".format(base_cmd, xdir=save_dir)
)
def visualize_env(save_dir, version):
save_dir = Path(str(save_dir))
save_dir.mkdir(parents=True, exist_ok=True)
dynamic_env = get_synthetic_env(version=version)
min_t, max_t = dynamic_env.min_timestamp, dynamic_env.max_timestamp
for idx, (timestamp, (allx, ally)) in enumerate(tqdm(dynamic_env, ncols=50)):
dpi, width, height = 30, 1800, 1400
figsize = width / float(dpi), height / float(dpi)
LabelSize, LegendFontsize, font_gap = 80, 80, 5
fig = plt.figure(figsize=figsize)
cur_ax = fig.add_subplot(1, 1, 1)
allx, ally = allx[:, 0].numpy(), ally[:, 0].numpy()
plot_scatter(cur_ax, allx, ally, "k", 0.99, 15, "timestamp={:05d}".format(idx))
cur_ax.set_xlabel("X", fontsize=LabelSize)
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
for tick in cur_ax.xaxis.get_major_ticks():
tick.label.set_fontsize(LabelSize - font_gap)
tick.label.set_rotation(10)
for tick in cur_ax.yaxis.get_major_ticks():
tick.label.set_fontsize(LabelSize - font_gap)
if version == "v1":
cur_ax.set_xlim(-2, 2)
cur_ax.set_ylim(-8, 8)
elif version == "v2":
cur_ax.set_xlim(-10, 10)
cur_ax.set_ylim(-60, 60)
cur_ax.legend(loc=1, fontsize=LegendFontsize)
save_path = save_dir / "v{:}-{:05d}".format(version, idx)
fig.savefig(str(save_path) + ".pdf", dpi=dpi, bbox_inches="tight", format="pdf")
fig.savefig(str(save_path) + ".png", dpi=dpi, bbox_inches="tight", format="png")
plt.close("all")
save_dir = save_dir.resolve()
base_cmd = "ffmpeg -y -i {xdir}/v{version}-%05d.png -vf scale=1800:1400 -pix_fmt yuv420p -vb 5000k".format(
xdir=save_dir, version=version
)
print(base_cmd)
os.system("{:} {xdir}/env-{ver}.mp4".format(base_cmd, xdir=save_dir, ver=version))
os.system("{:} {xdir}/env-{ver}.webm".format(base_cmd, xdir=save_dir, ver=version))
def compare_algs(save_dir, version, alg_dir="./outputs/lfna-synthetic"):
save_dir = Path(str(save_dir))
save_dir.mkdir(parents=True, exist_ok=True)
dpi, width, height = 30, 3200, 2000
figsize = width / float(dpi), height / float(dpi)
LabelSize, LegendFontsize, font_gap = 80, 80, 5
cache_path = Path(alg_dir) / "env-{:}-info.pth".format(version)
assert cache_path.exists(), "{:} does not exist".format(cache_path)
env_info = torch.load(cache_path)
alg_name2dir = OrderedDict()
alg_name2dir["Optimal"] = "use-same-timestamp"
alg_name2dir["Supervised Learning (History Data)"] = "use-all-past-data"
alg_name2dir["MAML"] = "use-maml-s1"
alg_name2all_containers = OrderedDict()
if version == "v1":
poststr = "v1-d16"
else:
raise ValueError("Invalid version: {:}".format(version))
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
ckp_path = Path(alg_dir) / "{:}-{:}".format(xdir, poststr) / "final-ckp.pth"
xdata = torch.load(ckp_path)
alg_name2all_containers[alg] = xdata["w_container_per_epoch"]
# load the basic model
model = get_model(
dict(model_type="simple_mlp"),
act_cls="leaky_relu",
norm_cls="identity",
input_dim=1,
output_dim=1,
)
alg2xs, alg2ys = defaultdict(list), defaultdict(list)
colors = ["r", "g", "b"]
dynamic_env = env_info["dynamic_env"]
min_t, max_t = dynamic_env.min_timestamp, dynamic_env.max_timestamp
linewidths = 10
for idx, (timestamp, (ori_allx, ori_ally)) in enumerate(
tqdm(dynamic_env, ncols=50)
):
if idx == 0:
continue
fig = plt.figure(figsize=figsize)
cur_ax = fig.add_subplot(2, 1, 1)
# the data
allx, ally = ori_allx[:, 0].numpy(), ori_ally[:, 0].numpy()
plot_scatter(cur_ax, allx, ally, "k", 0.99, linewidths, "Raw Data")
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
with torch.no_grad():
# predicts = ckp_data["model"](ori_allx)
predicts = model.forward_with_container(
ori_allx, alg_name2all_containers[alg][idx]
)
predicts = predicts.cpu()
# keep data
metric = MSEMetric()
metric(predicts, ori_ally)
predicts = predicts.view(-1).numpy()
alg2xs[alg].append(idx)
alg2ys[alg].append(metric.get_info()["mse"])
plot_scatter(cur_ax, allx, predicts, colors[idx_alg], 0.99, linewidths, alg)
cur_ax.set_xlabel("X", fontsize=LabelSize)
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
for tick in cur_ax.xaxis.get_major_ticks():
tick.label.set_fontsize(LabelSize - font_gap)
tick.label.set_rotation(10)
for tick in cur_ax.yaxis.get_major_ticks():
tick.label.set_fontsize(LabelSize - font_gap)
if version == "v1":
cur_ax.set_xlim(-2, 2)
cur_ax.set_ylim(-8, 8)
elif version == "v2":
cur_ax.set_xlim(-10, 10)
cur_ax.set_ylim(-60, 60)
cur_ax.legend(loc=1, fontsize=LegendFontsize)
# the trajectory data
cur_ax = fig.add_subplot(2, 1, 2)
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
# plot_scatter(cur_ax, alg2xs[alg], alg2ys[alg], olors[idx_alg], 0.99, linewidths, alg)
cur_ax.plot(
alg2xs[alg],
alg2ys[alg],
color=colors[idx_alg],
linestyle="-",
linewidth=5,
label=alg,
)
cur_ax.legend(loc=1, fontsize=LegendFontsize)
cur_ax.set_xlabel("Timestamp", fontsize=LabelSize)
cur_ax.set_ylabel("MSE", fontsize=LabelSize)
for tick in cur_ax.xaxis.get_major_ticks():
tick.label.set_fontsize(LabelSize - font_gap)
tick.label.set_rotation(10)
for tick in cur_ax.yaxis.get_major_ticks():
tick.label.set_fontsize(LabelSize - font_gap)
cur_ax.set_xlim(1, len(dynamic_env))
cur_ax.set_ylim(0, 10)
cur_ax.legend(loc=1, fontsize=LegendFontsize)
save_path = save_dir / "v{:}-{:05d}".format(version, idx)
fig.savefig(str(save_path) + ".pdf", dpi=dpi, bbox_inches="tight", format="pdf")
fig.savefig(str(save_path) + ".png", dpi=dpi, bbox_inches="tight", format="png")
plt.close("all")
save_dir = save_dir.resolve()
base_cmd = "ffmpeg -y -i {xdir}/v{ver}-%05d.png -vf scale={w}:{h} -pix_fmt yuv420p -vb 5000k".format(
xdir=save_dir, w=width, h=height, ver=version
)
os.system(
"{:} {xdir}/com-alg-{ver}.mp4".format(base_cmd, xdir=save_dir, ver=version)
)
os.system(
"{:} {xdir}/com-alg-{ver}.webm".format(base_cmd, xdir=save_dir, ver=version)
)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Visualize synthetic data.")
parser.add_argument(
"--save_dir",
type=str,
default="./outputs/vis-synthetic",
help="The save directory.",
)
args = parser.parse_args()
# visualize_env(os.path.join(args.save_dir, "vis-env"), "v1")
# visualize_env(os.path.join(args.save_dir, "vis-env"), "v2")
compare_algs(os.path.join(args.save_dir, "compare-alg-v2"), "v1")
# compare_cl(os.path.join(args.save_dir, "compare-cl"))