autodl-projects/lib/datasets/math_dynamic_funcs.py
2021-05-09 18:37:37 +08:00

94 lines
2.9 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
#####################################################
import math
import abc
import copy
import numpy as np
from typing import Optional
import torch
import torch.utils.data as data
from .math_base_funcs import FitFunc
class DynamicFunc(FitFunc):
"""The dynamic quadratic function, where each param is a function."""
def __init__(self, freedom: int, params=None):
super(DynamicFunc, self).__init__(freedom, None, params)
self._timestamp = None
def __call__(self, x, timestamp=None):
raise NotImplementedError
def _getitem(self, x, weights):
raise NotImplementedError
def set_timestamp(self, timestamp):
self._timestamp = timestamp
def noise_call(self, x, timestamp=None, std=0.1):
clean_y = self.__call__(x, timestamp)
if isinstance(clean_y, np.ndarray):
noise_y = clean_y + np.random.normal(scale=std, size=clean_y.shape)
else:
raise ValueError("Unkonwn type: {:}".format(type(clean_y)))
return noise_y
class DynamicLinearFunc(DynamicFunc):
"""The dynamic linear function that outputs f(x) = a * x + b.
The a and b is a function of timestamp.
"""
def __init__(self, params=None):
super(DynamicLinearFunc, self).__init__(3, params)
def __call__(self, x, timestamp=None):
self.check_valid()
if timestamp is None:
timestamp = self._timestamp
a = self._params[0](timestamp)
b = self._params[1](timestamp)
convert_fn = lambda x: x[-1] if isinstance(x, (tuple, list)) else x
a, b = convert_fn(a), convert_fn(b)
return a * x + b
def __repr__(self):
return "{name}({a} * x + {b}, timestamp={timestamp})".format(
name=self.__class__.__name__,
a=self._params[0],
b=self._params[1],
timestamp=self._timestamp,
)
class DynamicQuadraticFunc(DynamicFunc):
"""The dynamic quadratic function that outputs f(x) = a * x^2 + b * x + c.
The a, b, and c is a function of timestamp.
"""
def __init__(self, params=None):
super(DynamicQuadraticFunc, self).__init__(3, params)
def __call__(self, x, timestamp=None):
self.check_valid()
if timestamp is None:
timestamp = self._timestamp
a = self._params[0](timestamp)
b = self._params[1](timestamp)
c = self._params[2](timestamp)
convert_fn = lambda x: x[-1] if isinstance(x, (tuple, list)) else x
a, b, c = convert_fn(a), convert_fn(b), convert_fn(c)
return a * x * x + b * x + c
def __repr__(self):
return "{name}({a} * x^2 + {b} * x + {c}, timestamp={timestamp})".format(
name=self.__class__.__name__,
a=self._params[0],
b=self._params[1],
c=self._params[2],
timestamp=self._timestamp,
)