106 lines
4.6 KiB
Python
106 lines
4.6 KiB
Python
##################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
|
|
##############################################################################
|
|
# Random Search for Hyper-Parameter Optimization, JMLR 2012 ##################
|
|
##############################################################################
|
|
# python ./exps/NATS-algos/random_wo_share.py --dataset cifar10 --search_space tss
|
|
# python ./exps/NATS-algos/random_wo_share.py --dataset cifar100 --search_space tss
|
|
# python ./exps/NATS-algos/random_wo_share.py --dataset ImageNet16-120 --search_space tss
|
|
##############################################################################
|
|
import os, sys, time, glob, random, argparse
|
|
import numpy as np, collections
|
|
from copy import deepcopy
|
|
import torch
|
|
import torch.nn as nn
|
|
from pathlib import Path
|
|
|
|
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
|
if str(lib_dir) not in sys.path:
|
|
sys.path.insert(0, str(lib_dir))
|
|
from config_utils import load_config, dict2config, configure2str
|
|
from datasets import get_datasets, SearchDataset
|
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
|
from utils import get_model_infos, obtain_accuracy
|
|
from log_utils import AverageMeter, time_string, convert_secs2time
|
|
from models import get_search_spaces
|
|
from nats_bench import create
|
|
from regularized_ea import random_topology_func, random_size_func
|
|
|
|
|
|
def main(xargs, api):
|
|
torch.set_num_threads(4)
|
|
prepare_seed(xargs.rand_seed)
|
|
logger = prepare_logger(args)
|
|
|
|
logger.log("{:} use api : {:}".format(time_string(), api))
|
|
api.reset_time()
|
|
|
|
search_space = get_search_spaces(xargs.search_space, "nats-bench")
|
|
if xargs.search_space == "tss":
|
|
random_arch = random_topology_func(search_space)
|
|
else:
|
|
random_arch = random_size_func(search_space)
|
|
|
|
best_arch, best_acc, total_time_cost, history = None, -1, [], []
|
|
current_best_index = []
|
|
while len(total_time_cost) == 0 or total_time_cost[-1] < xargs.time_budget:
|
|
arch = random_arch()
|
|
accuracy, _, _, total_cost = api.simulate_train_eval(arch, xargs.dataset, hp="12")
|
|
total_time_cost.append(total_cost)
|
|
history.append(arch)
|
|
if best_arch is None or best_acc < accuracy:
|
|
best_acc, best_arch = accuracy, arch
|
|
logger.log("[{:03d}] : {:} : accuracy = {:.2f}%".format(len(history), arch, accuracy))
|
|
current_best_index.append(api.query_index_by_arch(best_arch))
|
|
logger.log(
|
|
"{:} best arch is {:}, accuracy = {:.2f}%, visit {:} archs with {:.1f} s.".format(
|
|
time_string(), best_arch, best_acc, len(history), total_time_cost[-1]
|
|
)
|
|
)
|
|
|
|
info = api.query_info_str_by_arch(best_arch, "200" if xargs.search_space == "tss" else "90")
|
|
logger.log("{:}".format(info))
|
|
logger.log("-" * 100)
|
|
logger.close()
|
|
return logger.log_dir, current_best_index, total_time_cost
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser("Random NAS")
|
|
parser.add_argument(
|
|
"--dataset",
|
|
type=str,
|
|
choices=["cifar10", "cifar100", "ImageNet16-120"],
|
|
help="Choose between Cifar10/100 and ImageNet-16.",
|
|
)
|
|
parser.add_argument("--search_space", type=str, choices=["tss", "sss"], help="Choose the search space.")
|
|
|
|
parser.add_argument(
|
|
"--time_budget", type=int, default=20000, help="The total time cost budge for searching (in seconds)."
|
|
)
|
|
parser.add_argument("--loops_if_rand", type=int, default=500, help="The total runs for evaluation.")
|
|
# log
|
|
parser.add_argument("--save_dir", type=str, default="./output/search", help="Folder to save checkpoints and log.")
|
|
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
|
args = parser.parse_args()
|
|
|
|
api = create(None, args.search_space, fast_mode=True, verbose=False)
|
|
|
|
args.save_dir = os.path.join(
|
|
"{:}-{:}".format(args.save_dir, args.search_space), "{:}-T{:}".format(args.dataset, args.time_budget), "RANDOM"
|
|
)
|
|
print("save-dir : {:}".format(args.save_dir))
|
|
|
|
if args.rand_seed < 0:
|
|
save_dir, all_info = None, collections.OrderedDict()
|
|
for i in range(args.loops_if_rand):
|
|
print("{:} : {:03d}/{:03d}".format(time_string(), i, args.loops_if_rand))
|
|
args.rand_seed = random.randint(1, 100000)
|
|
save_dir, all_archs, all_total_times = main(args, api)
|
|
all_info[i] = {"all_archs": all_archs, "all_total_times": all_total_times}
|
|
save_path = save_dir / "results.pth"
|
|
print("save into {:}".format(save_path))
|
|
torch.save(all_info, save_path)
|
|
else:
|
|
main(args, api)
|