100 lines
4.2 KiB
Python
100 lines
4.2 KiB
Python
###########################################################################
|
|
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
|
|
###########################################################################
|
|
import tensorflow as tf
|
|
import numpy as np
|
|
from copy import deepcopy
|
|
from ..cell_operations import ResNetBasicblock
|
|
from .search_cells import NAS201SearchCell as SearchCell
|
|
|
|
|
|
def sample_gumbel(shape, eps=1e-20):
|
|
U = tf.random.uniform(shape, minval=0, maxval=1)
|
|
return -tf.math.log(-tf.math.log(U + eps) + eps)
|
|
|
|
|
|
def gumbel_softmax(logits, temperature):
|
|
gumbel_softmax_sample = logits + sample_gumbel(tf.shape(logits))
|
|
y = tf.nn.softmax(gumbel_softmax_sample / temperature)
|
|
return y
|
|
|
|
|
|
class TinyNetworkGDAS(tf.keras.Model):
|
|
|
|
def __init__(self, C, N, max_nodes, num_classes, search_space, affine):
|
|
super(TinyNetworkGDAS, self).__init__()
|
|
self._C = C
|
|
self._layerN = N
|
|
self.max_nodes = max_nodes
|
|
self.stem = tf.keras.Sequential([
|
|
tf.keras.layers.Conv2D(16, 3, 1, padding='same', use_bias=False),
|
|
tf.keras.layers.BatchNormalization()], name='stem')
|
|
|
|
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
|
|
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
|
|
|
C_prev, num_edge, edge2index = C, None, None
|
|
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
|
|
cell_prefix = 'cell-{:03d}'.format(index)
|
|
#with tf.name_scope(cell_prefix) as scope:
|
|
if reduction:
|
|
cell = ResNetBasicblock(C_prev, C_curr, 2)
|
|
else:
|
|
cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine)
|
|
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
|
|
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
|
|
C_prev = cell.out_dim
|
|
setattr(self, cell_prefix, cell)
|
|
self.num_layers = len(layer_reductions)
|
|
self.op_names = deepcopy( search_space )
|
|
self.edge2index = edge2index
|
|
self.num_edge = num_edge
|
|
self.lastact = tf.keras.Sequential([
|
|
tf.keras.layers.BatchNormalization(),
|
|
tf.keras.layers.ReLU(),
|
|
tf.keras.layers.GlobalAvgPool2D(),
|
|
tf.keras.layers.Flatten(),
|
|
tf.keras.layers.Dense(num_classes, activation='softmax')], name='lastact')
|
|
#self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
|
|
arch_init = tf.random_normal_initializer(mean=0, stddev=0.001)
|
|
self.arch_parameters = tf.Variable(initial_value=arch_init(shape=(num_edge, len(search_space)), dtype='float32'), trainable=True, name='arch-encoding')
|
|
|
|
def get_alphas(self):
|
|
xlist = self.trainable_variables
|
|
return [x for x in xlist if 'arch-encoding' in x.name]
|
|
|
|
def get_weights(self):
|
|
xlist = self.trainable_variables
|
|
return [x for x in xlist if 'arch-encoding' not in x.name]
|
|
|
|
def get_np_alphas(self):
|
|
arch_nps = self.arch_parameters.numpy()
|
|
arch_ops = np.exp(arch_nps) / np.sum(np.exp(arch_nps), axis=-1, keepdims=True)
|
|
return arch_ops
|
|
|
|
def genotype(self):
|
|
genotypes, arch_nps = [], self.arch_parameters.numpy()
|
|
for i in range(1, self.max_nodes):
|
|
xlist = []
|
|
for j in range(i):
|
|
node_str = '{:}<-{:}'.format(i, j)
|
|
weights = arch_nps[ self.edge2index[node_str] ]
|
|
op_name = self.op_names[ weights.argmax().item() ]
|
|
xlist.append((op_name, j))
|
|
genotypes.append( tuple(xlist) )
|
|
return genotypes
|
|
|
|
#
|
|
def call(self, inputs, tau, training):
|
|
weightss = tf.cond(tau < 0, lambda: tf.nn.softmax(self.arch_parameters, axis=1),
|
|
lambda: gumbel_softmax(tf.math.log_softmax(self.arch_parameters, axis=1), tau))
|
|
feature = self.stem(inputs, training)
|
|
for idx in range(self.num_layers):
|
|
cell = getattr(self, 'cell-{:03d}'.format(idx))
|
|
if isinstance(cell, SearchCell):
|
|
feature = cell.call(feature, weightss, training)
|
|
else:
|
|
feature = cell(feature, training)
|
|
logits = self.lastact(feature, training)
|
|
return logits
|