autodl-projects/others/GDAS/paddlepaddle/lib/models/operations.py
2019-11-15 17:15:07 +11:00

92 lines
4.8 KiB
Python

import paddle
import paddle.fluid as fluid
OPS = {
'none' : lambda inputs, C_in, C_out, stride: ZERO(inputs, stride),
'avg_pool_3x3' : lambda inputs, C_in, C_out, stride: POOL_3x3(inputs, C_in, C_out, stride, 'avg'),
'max_pool_3x3' : lambda inputs, C_in, C_out, stride: POOL_3x3(inputs, C_in, C_out, stride, 'max'),
'skip_connect' : lambda inputs, C_in, C_out, stride: Identity(inputs, C_in, C_out, stride),
'sep_conv_3x3' : lambda inputs, C_in, C_out, stride: SepConv(inputs, C_in, C_out, 3, stride, 1),
'sep_conv_5x5' : lambda inputs, C_in, C_out, stride: SepConv(inputs, C_in, C_out, 5, stride, 2),
'sep_conv_7x7' : lambda inputs, C_in, C_out, stride: SepConv(inputs, C_in, C_out, 7, stride, 3),
'dil_conv_3x3' : lambda inputs, C_in, C_out, stride: DilConv(inputs, C_in, C_out, 3, stride, 2, 2),
'dil_conv_5x5' : lambda inputs, C_in, C_out, stride: DilConv(inputs, C_in, C_out, 5, stride, 4, 2),
'conv_3x1_1x3' : lambda inputs, C_in, C_out, stride: Conv313(inputs, C_in, C_out, stride),
'conv_7x1_1x7' : lambda inputs, C_in, C_out, stride: Conv717(inputs, C_in, C_out, stride),
}
def ReLUConvBN(inputs, C_in, C_out, kernel, stride, padding):
temp = fluid.layers.relu(inputs)
temp = fluid.layers.conv2d(temp, filter_size=kernel, num_filters=C_out, stride=stride, padding=padding, act=None, bias_attr=False)
temp = fluid.layers.batch_norm(input=temp, act=None, bias_attr=None)
return temp
def ZERO(inputs, stride):
if stride == 1:
return inputs * 0
elif stride == 2:
return fluid.layers.pool2d(inputs, filter_size=2, pool_stride=2, pool_padding=0, pool_type='avg') * 0
else:
raise ValueError('invalid stride of {:} not [1, 2]'.format(stride))
def Identity(inputs, C_in, C_out, stride):
if C_in == C_out and stride == 1:
return inputs
elif stride == 1:
return ReLUConvBN(inputs, C_in, C_out, 1, 1, 0)
else:
temp1 = fluid.layers.relu(inputs)
temp2 = fluid.layers.pad2d(input=temp1, paddings=[0, 1, 0, 1], mode='reflect')
temp2 = fluid.layers.slice(temp2, axes=[0, 1, 2, 3], starts=[0, 0, 1, 1], ends=[999, 999, 999, 999])
temp1 = fluid.layers.conv2d(temp1, filter_size=1, num_filters=C_out//2, stride=stride, padding=0, act=None, bias_attr=False)
temp2 = fluid.layers.conv2d(temp2, filter_size=1, num_filters=C_out-C_out//2, stride=stride, padding=0, act=None, bias_attr=False)
temp = fluid.layers.concat([temp1,temp2], axis=1)
return fluid.layers.batch_norm(input=temp, act=None, bias_attr=None)
def POOL_3x3(inputs, C_in, C_out, stride, mode):
if C_in == C_out:
xinputs = inputs
else:
xinputs = ReLUConvBN(inputs, C_in, C_out, 1, 1, 0)
return fluid.layers.pool2d(xinputs, pool_size=3, pool_stride=stride, pool_padding=1, pool_type=mode)
def SepConv(inputs, C_in, C_out, kernel, stride, padding):
temp = fluid.layers.relu(inputs)
temp = fluid.layers.conv2d(temp, filter_size=kernel, num_filters=C_in , stride=stride, padding=padding, act=None, bias_attr=False)
temp = fluid.layers.conv2d(temp, filter_size= 1, num_filters=C_in , stride= 1, padding= 0, act=None, bias_attr=False)
temp = fluid.layers.batch_norm(input=temp, act='relu', bias_attr=None)
temp = fluid.layers.conv2d(temp, filter_size=kernel, num_filters=C_in , stride= 1, padding=padding, act=None, bias_attr=False)
temp = fluid.layers.conv2d(temp, filter_size= 1, num_filters=C_out, stride= 1, padding= 0, act=None, bias_attr=False)
temp = fluid.layers.batch_norm(input=temp, act=None , bias_attr=None)
return temp
def DilConv(inputs, C_in, C_out, kernel, stride, padding, dilation):
temp = fluid.layers.relu(inputs)
temp = fluid.layers.conv2d(temp, filter_size=kernel, num_filters=C_in , stride=stride, padding=padding, dilation=dilation, act=None, bias_attr=False)
temp = fluid.layers.conv2d(temp, filter_size= 1, num_filters=C_out, stride= 1, padding= 0, act=None, bias_attr=False)
temp = fluid.layers.batch_norm(input=temp, act=None, bias_attr=None)
return temp
def Conv313(inputs, C_in, C_out, stride):
temp = fluid.layers.relu(inputs)
temp = fluid.layers.conv2d(temp, filter_size=(1,3), num_filters=C_out, stride=(1,stride), padding=(0,1), act=None, bias_attr=False)
temp = fluid.layers.conv2d(temp, filter_size=(3,1), num_filters=C_out, stride=(stride,1), padding=(1,0), act=None, bias_attr=False)
temp = fluid.layers.batch_norm(input=temp, act=None, bias_attr=None)
return temp
def Conv717(inputs, C_in, C_out, stride):
temp = fluid.layers.relu(inputs)
temp = fluid.layers.conv2d(temp, filter_size=(1,7), num_filters=C_out, stride=(1,stride), padding=(0,3), act=None, bias_attr=False)
temp = fluid.layers.conv2d(temp, filter_size=(7,1), num_filters=C_out, stride=(stride,1), padding=(3,0), act=None, bias_attr=False)
temp = fluid.layers.batch_norm(input=temp, act=None, bias_attr=None)
return temp