93 lines
4.5 KiB
Python
93 lines
4.5 KiB
Python
##################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
|
|
##############################################################################
|
|
# Random Search for Hyper-Parameter Optimization, JMLR 2012 ##################
|
|
##############################################################################
|
|
# python ./exps/NATS-algos/random_wo_share.py --dataset cifar10 --search_space tss
|
|
# python ./exps/NATS-algos/random_wo_share.py --dataset cifar100 --search_space tss
|
|
# python ./exps/NATS-algos/random_wo_share.py --dataset ImageNet16-120 --search_space tss
|
|
##############################################################################
|
|
import os, sys, time, glob, random, argparse
|
|
import numpy as np, collections
|
|
from copy import deepcopy
|
|
import torch
|
|
import torch.nn as nn
|
|
from pathlib import Path
|
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
|
from config_utils import load_config, dict2config, configure2str
|
|
from datasets import get_datasets, SearchDataset
|
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
|
from utils import get_model_infos, obtain_accuracy
|
|
from log_utils import AverageMeter, time_string, convert_secs2time
|
|
from models import get_search_spaces
|
|
from nats_bench import create
|
|
from regularized_ea import random_topology_func, random_size_func
|
|
|
|
|
|
def main(xargs, api):
|
|
torch.set_num_threads(4)
|
|
prepare_seed(xargs.rand_seed)
|
|
logger = prepare_logger(args)
|
|
|
|
logger.log('{:} use api : {:}'.format(time_string(), api))
|
|
api.reset_time()
|
|
|
|
search_space = get_search_spaces(xargs.search_space, 'nats-bench')
|
|
if xargs.search_space == 'tss':
|
|
random_arch = random_topology_func(search_space)
|
|
else:
|
|
random_arch = random_size_func(search_space)
|
|
|
|
best_arch, best_acc, total_time_cost, history = None, -1, [], []
|
|
current_best_index = []
|
|
while len(total_time_cost) == 0 or total_time_cost[-1] < xargs.time_budget:
|
|
arch = random_arch()
|
|
accuracy, _, _, total_cost = api.simulate_train_eval(arch, xargs.dataset, hp='12')
|
|
total_time_cost.append(total_cost)
|
|
history.append(arch)
|
|
if best_arch is None or best_acc < accuracy:
|
|
best_acc, best_arch = accuracy, arch
|
|
logger.log('[{:03d}] : {:} : accuracy = {:.2f}%'.format(len(history), arch, accuracy))
|
|
current_best_index.append(api.query_index_by_arch(best_arch))
|
|
logger.log('{:} best arch is {:}, accuracy = {:.2f}%, visit {:} archs with {:.1f} s.'.format(time_string(), best_arch, best_acc, len(history), total_time_cost[-1]))
|
|
|
|
info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90')
|
|
logger.log('{:}'.format(info))
|
|
logger.log('-'*100)
|
|
logger.close()
|
|
return logger.log_dir, current_best_index, total_time_cost
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser("Random NAS")
|
|
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
|
parser.add_argument('--search_space', type=str, choices=['tss', 'sss'], help='Choose the search space.')
|
|
|
|
parser.add_argument('--time_budget', type=int, default=20000, help='The total time cost budge for searching (in seconds).')
|
|
parser.add_argument('--loops_if_rand', type=int, default=500, help='The total runs for evaluation.')
|
|
# log
|
|
parser.add_argument('--save_dir', type=str, default='./output/search', help='Folder to save checkpoints and log.')
|
|
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
|
args = parser.parse_args()
|
|
|
|
api = create(None, args.search_space, fast_mode=True, verbose=False)
|
|
|
|
args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space),
|
|
'{:}-T{:}'.format(args.dataset, args.time_budget), 'RANDOM')
|
|
print('save-dir : {:}'.format(args.save_dir))
|
|
|
|
if args.rand_seed < 0:
|
|
save_dir, all_info = None, collections.OrderedDict()
|
|
for i in range(args.loops_if_rand):
|
|
print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand))
|
|
args.rand_seed = random.randint(1, 100000)
|
|
save_dir, all_archs, all_total_times = main(args, api)
|
|
all_info[i] = {'all_archs': all_archs,
|
|
'all_total_times': all_total_times}
|
|
save_path = save_dir / 'results.pth'
|
|
print('save into {:}'.format(save_path))
|
|
torch.save(all_info, save_path)
|
|
else:
|
|
main(args, api)
|