autodl-projects/xautodl/datasets/DownsampledImageNet.py
2021-05-18 14:08:00 +00:00

149 lines
5.2 KiB
Python

##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
##################################################
import os, sys, hashlib, torch
import numpy as np
from PIL import Image
import torch.utils.data as data
if sys.version_info[0] == 2:
import cPickle as pickle
else:
import pickle
def calculate_md5(fpath, chunk_size=1024 * 1024):
md5 = hashlib.md5()
with open(fpath, "rb") as f:
for chunk in iter(lambda: f.read(chunk_size), b""):
md5.update(chunk)
return md5.hexdigest()
def check_md5(fpath, md5, **kwargs):
return md5 == calculate_md5(fpath, **kwargs)
def check_integrity(fpath, md5=None):
if not os.path.isfile(fpath):
return False
if md5 is None:
return True
else:
return check_md5(fpath, md5)
class ImageNet16(data.Dataset):
# http://image-net.org/download-images
# A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets
# https://arxiv.org/pdf/1707.08819.pdf
train_list = [
["train_data_batch_1", "27846dcaa50de8e21a7d1a35f30f0e91"],
["train_data_batch_2", "c7254a054e0e795c69120a5727050e3f"],
["train_data_batch_3", "4333d3df2e5ffb114b05d2ffc19b1e87"],
["train_data_batch_4", "1620cdf193304f4a92677b695d70d10f"],
["train_data_batch_5", "348b3c2fdbb3940c4e9e834affd3b18d"],
["train_data_batch_6", "6e765307c242a1b3d7d5ef9139b48945"],
["train_data_batch_7", "564926d8cbf8fc4818ba23d2faac7564"],
["train_data_batch_8", "f4755871f718ccb653440b9dd0ebac66"],
["train_data_batch_9", "bb6dd660c38c58552125b1a92f86b5d4"],
["train_data_batch_10", "8f03f34ac4b42271a294f91bf480f29b"],
]
valid_list = [
["val_data", "3410e3017fdaefba8d5073aaa65e4bd6"],
]
def __init__(self, root, train, transform, use_num_of_class_only=None):
self.root = root
self.transform = transform
self.train = train # training set or valid set
if not self._check_integrity():
raise RuntimeError("Dataset not found or corrupted.")
if self.train:
downloaded_list = self.train_list
else:
downloaded_list = self.valid_list
self.data = []
self.targets = []
# now load the picked numpy arrays
for i, (file_name, checksum) in enumerate(downloaded_list):
file_path = os.path.join(self.root, file_name)
# print ('Load {:}/{:02d}-th : {:}'.format(i, len(downloaded_list), file_path))
with open(file_path, "rb") as f:
if sys.version_info[0] == 2:
entry = pickle.load(f)
else:
entry = pickle.load(f, encoding="latin1")
self.data.append(entry["data"])
self.targets.extend(entry["labels"])
self.data = np.vstack(self.data).reshape(-1, 3, 16, 16)
self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC
if use_num_of_class_only is not None:
assert (
isinstance(use_num_of_class_only, int)
and use_num_of_class_only > 0
and use_num_of_class_only < 1000
), "invalid use_num_of_class_only : {:}".format(use_num_of_class_only)
new_data, new_targets = [], []
for I, L in zip(self.data, self.targets):
if 1 <= L <= use_num_of_class_only:
new_data.append(I)
new_targets.append(L)
self.data = new_data
self.targets = new_targets
# self.mean.append(entry['mean'])
# self.mean = np.vstack(self.mean).reshape(-1, 3, 16, 16)
# self.mean = np.mean(np.mean(np.mean(self.mean, axis=0), axis=1), axis=1)
# print ('Mean : {:}'.format(self.mean))
# temp = self.data - np.reshape(self.mean, (1, 1, 1, 3))
# std_data = np.std(temp, axis=0)
# std_data = np.mean(np.mean(std_data, axis=0), axis=0)
# print ('Std : {:}'.format(std_data))
def __repr__(self):
return "{name}({num} images, {classes} classes)".format(
name=self.__class__.__name__,
num=len(self.data),
classes=len(set(self.targets)),
)
def __getitem__(self, index):
img, target = self.data[index], self.targets[index] - 1
img = Image.fromarray(img)
if self.transform is not None:
img = self.transform(img)
return img, target
def __len__(self):
return len(self.data)
def _check_integrity(self):
root = self.root
for fentry in self.train_list + self.valid_list:
filename, md5 = fentry[0], fentry[1]
fpath = os.path.join(root, filename)
if not check_integrity(fpath, md5):
return False
return True
"""
if __name__ == '__main__':
train = ImageNet16('~/.torch/cifar.python/ImageNet16', True , None)
valid = ImageNet16('~/.torch/cifar.python/ImageNet16', False, None)
print ( len(train) )
print ( len(valid) )
image, label = train[111]
trainX = ImageNet16('~/.torch/cifar.python/ImageNet16', True , None, 200)
validX = ImageNet16('~/.torch/cifar.python/ImageNet16', False , None, 200)
print ( len(trainX) )
print ( len(validX) )
"""