autodl-projects/lib/layers/super_mlp.py
2021-03-18 16:02:55 +08:00

64 lines
2.1 KiB
Python

import torch.nn as nn
from torch.nn.parameter import Parameter
from typing import Optional
from layers.super_module import SuperModule
from layers.super_module import SuperModule
class SuperLinear(SuperModule):
"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`"""
def __init__(self, in_features: int, out_features: int, bias: bool = True) -> None:
super(SuperLinear, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in_features))
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter("bias", None)
self.reset_parameters()
def reset_parameters(self) -> None:
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
def forward(self, input: Tensor) -> Tensor:
return F.linear(input, self.weight, self.bias)
def extra_repr(self) -> str:
return "in_features={:}, out_features={:}, bias={:}".format(
self.in_features, self.out_features, self.bias is not None
)
class SuperMLP(nn.Module):
# MLP: FC -> Activation -> Drop -> FC -> Drop
def __init__(
self,
in_features,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer=nn.GELU,
drop: Optional[float] = None,
):
super(MLP, self).__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop or 0)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x