182 lines
5.8 KiB
Python
182 lines
5.8 KiB
Python
#####################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
|
|
############################################################################
|
|
# CUDA_VISIBLE_DEVICES=0 python exps/LFNA/vis-synthetic.py #
|
|
############################################################################
|
|
import os, sys, copy, random
|
|
import torch
|
|
import numpy as np
|
|
import argparse
|
|
from collections import OrderedDict
|
|
from pathlib import Path
|
|
from tqdm import tqdm
|
|
from pprint import pprint
|
|
|
|
import matplotlib
|
|
from matplotlib import cm
|
|
|
|
matplotlib.use("agg")
|
|
import matplotlib.pyplot as plt
|
|
import matplotlib.ticker as ticker
|
|
|
|
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
|
if str(lib_dir) not in sys.path:
|
|
sys.path.insert(0, str(lib_dir))
|
|
|
|
|
|
from datasets.synthetic_example import create_example_v1
|
|
from utils.temp_sync import optimize_fn, evaluate_fn
|
|
|
|
|
|
def draw_multi_fig(save_dir, timestamp, scatter_list, wh, fig_title=None):
|
|
save_path = save_dir / "{:04d}".format(timestamp)
|
|
# print('Plot the figure at timestamp-{:} into {:}'.format(timestamp, save_path))
|
|
dpi, width, height = 40, wh[0], wh[1]
|
|
figsize = width / float(dpi), height / float(dpi)
|
|
LabelSize, LegendFontsize, font_gap = 80, 80, 5
|
|
|
|
fig = plt.figure(figsize=figsize)
|
|
if fig_title is not None:
|
|
fig.suptitle(fig_title, fontsize=LegendFontsize)
|
|
|
|
for idx, scatter_dict in enumerate(scatter_list):
|
|
cur_ax = fig.add_subplot(len(scatter_list), 1, idx + 1)
|
|
cur_ax.scatter(
|
|
scatter_dict["xaxis"],
|
|
scatter_dict["yaxis"],
|
|
color=scatter_dict["color"],
|
|
s=scatter_dict["s"],
|
|
alpha=scatter_dict["alpha"],
|
|
label=scatter_dict["label"],
|
|
)
|
|
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
|
cur_ax.set_ylabel("f(X)", rotation=0, fontsize=LabelSize)
|
|
cur_ax.set_xlim(scatter_dict["xlim"][0], scatter_dict["xlim"][1])
|
|
cur_ax.set_ylim(scatter_dict["ylim"][0], scatter_dict["ylim"][1])
|
|
for tick in cur_ax.xaxis.get_major_ticks():
|
|
tick.label.set_fontsize(LabelSize - font_gap)
|
|
tick.label.set_rotation(10)
|
|
for tick in cur_ax.yaxis.get_major_ticks():
|
|
tick.label.set_fontsize(LabelSize - font_gap)
|
|
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
|
fig.savefig(str(save_path) + ".pdf", dpi=dpi, bbox_inches="tight", format="pdf")
|
|
fig.savefig(str(save_path) + ".png", dpi=dpi, bbox_inches="tight", format="png")
|
|
plt.close("all")
|
|
|
|
|
|
def find_min(cur, others):
|
|
if cur is None:
|
|
return float(others.min())
|
|
else:
|
|
return float(min(cur, others.min()))
|
|
|
|
|
|
def find_max(cur, others):
|
|
if cur is None:
|
|
return float(others.max())
|
|
else:
|
|
return float(max(cur, others.max()))
|
|
|
|
|
|
def compare_cl(save_dir):
|
|
save_dir = Path(str(save_dir))
|
|
save_dir.mkdir(parents=True, exist_ok=True)
|
|
dynamic_env, function = create_example_v1(
|
|
timestamp_config=dict(num=200, min_timestamp=-1, max_timestamp=1.0),
|
|
num_per_task=1000,
|
|
)
|
|
|
|
models = dict()
|
|
|
|
cl_function = copy.deepcopy(function)
|
|
cl_function.set_timestamp(0)
|
|
cl_xaxis_min = None
|
|
cl_xaxis_max = None
|
|
|
|
all_data = OrderedDict()
|
|
|
|
for idx, (timestamp, dataset) in enumerate(tqdm(dynamic_env, ncols=50)):
|
|
xaxis_all = dataset[:, 0].numpy()
|
|
current_data = dict()
|
|
|
|
function.set_timestamp(timestamp)
|
|
yaxis_all = function.noise_call(xaxis_all)
|
|
current_data["lfna_xaxis_all"] = xaxis_all
|
|
current_data["lfna_yaxis_all"] = yaxis_all
|
|
|
|
import pdb
|
|
|
|
pdb.set_trace()
|
|
|
|
# compute cl-min
|
|
cl_xaxis_min = find_min(cl_xaxis_min, xaxis_all)
|
|
cl_xaxis_max = find_max(cl_xaxis_max, xaxis_all) + idx * 0.1
|
|
cl_xaxis_all = np.arange(cl_xaxis_min, cl_xaxis_max, step=0.05)
|
|
|
|
cl_yaxis_all = cl_function.noise_call(cl_xaxis_all)
|
|
current_data["cl_xaxis_all"] = cl_xaxis_all
|
|
current_data["cl_yaxis_all"] = cl_yaxis_all
|
|
all_data[timestamp] = current_data
|
|
|
|
for idx, (timestamp, xdata) in enumerate(tqdm(all_data.items(), ncols=50)):
|
|
scatter_list = []
|
|
scatter_list.append(
|
|
{
|
|
"xaxis": xdata["lfna_xaxis_all"],
|
|
"yaxis": xdata["lfna_yaxis_all"],
|
|
"color": "k",
|
|
"s": 10,
|
|
"alpha": 0.99,
|
|
"xlim": (-6, 6),
|
|
"ylim": (-40, 40),
|
|
"label": "LFNA",
|
|
}
|
|
)
|
|
|
|
cl_xaxis_all = current_data["cl_xaxis_all"]
|
|
cl_yaxis_all = current_data["cl_yaxis_all"]
|
|
|
|
scatter_list.append(
|
|
{
|
|
"xaxis": cl_xaxis_all,
|
|
"yaxis": cl_yaxis_all,
|
|
"color": "r",
|
|
"s": 10,
|
|
"xlim": (-6, 6 + timestamp * 0.2),
|
|
"ylim": (-40, 40),
|
|
"alpha": 0.99,
|
|
"label": "Continual Learning",
|
|
}
|
|
)
|
|
|
|
draw_multi_fig(
|
|
save_dir,
|
|
timestamp,
|
|
scatter_list,
|
|
wh=(2000, 1300),
|
|
fig_title="Timestamp={:03d}".format(timestamp),
|
|
)
|
|
print("Save all figures into {:}".format(save_dir))
|
|
save_dir = save_dir.resolve()
|
|
base_cmd = (
|
|
"ffmpeg -y -i {xdir}/%04d.png -vf fps=2 -vf scale=2000:1300 -vb 5000k".format(
|
|
xdir=save_dir
|
|
)
|
|
)
|
|
os.system("{:} -pix_fmt yuv420p {xdir}/vis.mp4".format(base_cmd, xdir=save_dir))
|
|
os.system("{:} -c:a libvorbis {xdir}/vis.webm".format(base_cmd, xdir=save_dir))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser("Visualize synthetic data.")
|
|
parser.add_argument(
|
|
"--save_dir",
|
|
type=str,
|
|
default="./outputs/vis-synthetic",
|
|
help="The save directory.",
|
|
)
|
|
args = parser.parse_args()
|
|
|
|
compare_cl(os.path.join(args.save_dir, "compare-cl"))
|