295 lines
11 KiB
Python
295 lines
11 KiB
Python
##################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
|
|
#####################################################################################################
|
|
# modified from https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py #
|
|
#####################################################################################################
|
|
import os, sys, time, glob, random, argparse
|
|
import numpy as np, collections
|
|
from copy import deepcopy
|
|
from pathlib import Path
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.distributions import Categorical
|
|
|
|
from xautodl.config_utils import load_config, dict2config, configure2str
|
|
from xautodl.datasets import get_datasets, SearchDataset
|
|
from xautodl.procedures import (
|
|
prepare_seed,
|
|
prepare_logger,
|
|
save_checkpoint,
|
|
copy_checkpoint,
|
|
get_optim_scheduler,
|
|
)
|
|
from xautodl.utils import get_model_infos, obtain_accuracy
|
|
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
|
|
from xautodl.models import CellStructure, get_search_spaces
|
|
from nas_201_api import NASBench201API as API
|
|
from R_EA import train_and_eval
|
|
|
|
|
|
class Policy(nn.Module):
|
|
def __init__(self, max_nodes, search_space):
|
|
super(Policy, self).__init__()
|
|
self.max_nodes = max_nodes
|
|
self.search_space = deepcopy(search_space)
|
|
self.edge2index = {}
|
|
for i in range(1, max_nodes):
|
|
for j in range(i):
|
|
node_str = "{:}<-{:}".format(i, j)
|
|
self.edge2index[node_str] = len(self.edge2index)
|
|
self.arch_parameters = nn.Parameter(
|
|
1e-3 * torch.randn(len(self.edge2index), len(search_space))
|
|
)
|
|
|
|
def generate_arch(self, actions):
|
|
genotypes = []
|
|
for i in range(1, self.max_nodes):
|
|
xlist = []
|
|
for j in range(i):
|
|
node_str = "{:}<-{:}".format(i, j)
|
|
op_name = self.search_space[actions[self.edge2index[node_str]]]
|
|
xlist.append((op_name, j))
|
|
genotypes.append(tuple(xlist))
|
|
return CellStructure(genotypes)
|
|
|
|
def genotype(self):
|
|
genotypes = []
|
|
for i in range(1, self.max_nodes):
|
|
xlist = []
|
|
for j in range(i):
|
|
node_str = "{:}<-{:}".format(i, j)
|
|
with torch.no_grad():
|
|
weights = self.arch_parameters[self.edge2index[node_str]]
|
|
op_name = self.search_space[weights.argmax().item()]
|
|
xlist.append((op_name, j))
|
|
genotypes.append(tuple(xlist))
|
|
return CellStructure(genotypes)
|
|
|
|
def forward(self):
|
|
alphas = nn.functional.softmax(self.arch_parameters, dim=-1)
|
|
return alphas
|
|
|
|
|
|
class ExponentialMovingAverage(object):
|
|
"""Class that maintains an exponential moving average."""
|
|
|
|
def __init__(self, momentum):
|
|
self._numerator = 0
|
|
self._denominator = 0
|
|
self._momentum = momentum
|
|
|
|
def update(self, value):
|
|
self._numerator = (
|
|
self._momentum * self._numerator + (1 - self._momentum) * value
|
|
)
|
|
self._denominator = self._momentum * self._denominator + (1 - self._momentum)
|
|
|
|
def value(self):
|
|
"""Return the current value of the moving average"""
|
|
return self._numerator / self._denominator
|
|
|
|
|
|
def select_action(policy):
|
|
probs = policy()
|
|
m = Categorical(probs)
|
|
action = m.sample()
|
|
# policy.saved_log_probs.append(m.log_prob(action))
|
|
return m.log_prob(action), action.cpu().tolist()
|
|
|
|
|
|
def main(xargs, nas_bench):
|
|
assert torch.cuda.is_available(), "CUDA is not available."
|
|
torch.backends.cudnn.enabled = True
|
|
torch.backends.cudnn.benchmark = False
|
|
torch.backends.cudnn.deterministic = True
|
|
torch.set_num_threads(xargs.workers)
|
|
prepare_seed(xargs.rand_seed)
|
|
logger = prepare_logger(args)
|
|
|
|
if xargs.dataset == "cifar10":
|
|
dataname = "cifar10-valid"
|
|
else:
|
|
dataname = xargs.dataset
|
|
if xargs.data_path is not None:
|
|
train_data, valid_data, xshape, class_num = get_datasets(
|
|
xargs.dataset, xargs.data_path, -1
|
|
)
|
|
split_Fpath = "configs/nas-benchmark/cifar-split.txt"
|
|
cifar_split = load_config(split_Fpath, None, None)
|
|
train_split, valid_split = cifar_split.train, cifar_split.valid
|
|
logger.log("Load split file from {:}".format(split_Fpath))
|
|
config_path = "configs/nas-benchmark/algos/R-EA.config"
|
|
config = load_config(
|
|
config_path, {"class_num": class_num, "xshape": xshape}, logger
|
|
)
|
|
# To split data
|
|
train_data_v2 = deepcopy(train_data)
|
|
train_data_v2.transform = valid_data.transform
|
|
valid_data = train_data_v2
|
|
search_data = SearchDataset(xargs.dataset, train_data, train_split, valid_split)
|
|
# data loader
|
|
train_loader = torch.utils.data.DataLoader(
|
|
train_data,
|
|
batch_size=config.batch_size,
|
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split),
|
|
num_workers=xargs.workers,
|
|
pin_memory=True,
|
|
)
|
|
valid_loader = torch.utils.data.DataLoader(
|
|
valid_data,
|
|
batch_size=config.batch_size,
|
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split),
|
|
num_workers=xargs.workers,
|
|
pin_memory=True,
|
|
)
|
|
logger.log(
|
|
"||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format(
|
|
xargs.dataset, len(train_loader), len(valid_loader), config.batch_size
|
|
)
|
|
)
|
|
logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config))
|
|
extra_info = {
|
|
"config": config,
|
|
"train_loader": train_loader,
|
|
"valid_loader": valid_loader,
|
|
}
|
|
else:
|
|
config_path = "configs/nas-benchmark/algos/R-EA.config"
|
|
config = load_config(config_path, None, logger)
|
|
extra_info = {"config": config, "train_loader": None, "valid_loader": None}
|
|
logger.log("||||||| {:10s} ||||||| Config={:}".format(xargs.dataset, config))
|
|
|
|
search_space = get_search_spaces("cell", xargs.search_space_name)
|
|
policy = Policy(xargs.max_nodes, search_space)
|
|
optimizer = torch.optim.Adam(policy.parameters(), lr=xargs.learning_rate)
|
|
# optimizer = torch.optim.SGD(policy.parameters(), lr=xargs.learning_rate)
|
|
eps = np.finfo(np.float32).eps.item()
|
|
baseline = ExponentialMovingAverage(xargs.EMA_momentum)
|
|
logger.log("policy : {:}".format(policy))
|
|
logger.log("optimizer : {:}".format(optimizer))
|
|
logger.log("eps : {:}".format(eps))
|
|
|
|
# nas dataset load
|
|
logger.log("{:} use nas_bench : {:}".format(time_string(), nas_bench))
|
|
|
|
# REINFORCE
|
|
# attempts = 0
|
|
x_start_time = time.time()
|
|
logger.log(
|
|
"Will start searching with time budget of {:} s.".format(xargs.time_budget)
|
|
)
|
|
total_steps, total_costs, trace = 0, 0, []
|
|
# for istep in range(xargs.RL_steps):
|
|
while total_costs < xargs.time_budget:
|
|
start_time = time.time()
|
|
log_prob, action = select_action(policy)
|
|
arch = policy.generate_arch(action)
|
|
reward, cost_time = train_and_eval(arch, nas_bench, extra_info, dataname)
|
|
trace.append((reward, arch))
|
|
# accumulate time
|
|
if total_costs + cost_time < xargs.time_budget:
|
|
total_costs += cost_time
|
|
else:
|
|
break
|
|
|
|
baseline.update(reward)
|
|
# calculate loss
|
|
policy_loss = (-log_prob * (reward - baseline.value())).sum()
|
|
optimizer.zero_grad()
|
|
policy_loss.backward()
|
|
optimizer.step()
|
|
# accumulate time
|
|
total_costs += time.time() - start_time
|
|
total_steps += 1
|
|
logger.log(
|
|
"step [{:3d}] : average-reward={:.3f} : policy_loss={:.4f} : {:}".format(
|
|
total_steps, baseline.value(), policy_loss.item(), policy.genotype()
|
|
)
|
|
)
|
|
# logger.log('----> {:}'.format(policy.arch_parameters))
|
|
# logger.log('')
|
|
|
|
# best_arch = policy.genotype() # first version
|
|
best_arch = max(trace, key=lambda x: x[0])[1]
|
|
logger.log(
|
|
"REINFORCE finish with {:} steps and {:.1f} s (real cost={:.3f}).".format(
|
|
total_steps, total_costs, time.time() - x_start_time
|
|
)
|
|
)
|
|
info = nas_bench.query_by_arch(best_arch, "200")
|
|
if info is None:
|
|
logger.log("Did not find this architecture : {:}.".format(best_arch))
|
|
else:
|
|
logger.log("{:}".format(info))
|
|
logger.log("-" * 100)
|
|
logger.close()
|
|
return logger.log_dir, nas_bench.query_index_by_arch(best_arch)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser("The REINFORCE Algorithm")
|
|
parser.add_argument("--data_path", type=str, help="Path to dataset")
|
|
parser.add_argument(
|
|
"--dataset",
|
|
type=str,
|
|
choices=["cifar10", "cifar100", "ImageNet16-120"],
|
|
help="Choose between Cifar10/100 and ImageNet-16.",
|
|
)
|
|
# channels and number-of-cells
|
|
parser.add_argument("--search_space_name", type=str, help="The search space name.")
|
|
parser.add_argument("--max_nodes", type=int, help="The maximum number of nodes.")
|
|
parser.add_argument("--channel", type=int, help="The number of channels.")
|
|
parser.add_argument(
|
|
"--num_cells", type=int, help="The number of cells in one stage."
|
|
)
|
|
parser.add_argument(
|
|
"--learning_rate", type=float, help="The learning rate for REINFORCE."
|
|
)
|
|
# parser.add_argument('--RL_steps', type=int, help='The steps for REINFORCE.')
|
|
parser.add_argument(
|
|
"--EMA_momentum", type=float, help="The momentum value for EMA."
|
|
)
|
|
parser.add_argument(
|
|
"--time_budget",
|
|
type=int,
|
|
help="The total time cost budge for searching (in seconds).",
|
|
)
|
|
# log
|
|
parser.add_argument(
|
|
"--workers",
|
|
type=int,
|
|
default=2,
|
|
help="number of data loading workers (default: 2)",
|
|
)
|
|
parser.add_argument(
|
|
"--save_dir", type=str, help="Folder to save checkpoints and log."
|
|
)
|
|
parser.add_argument(
|
|
"--arch_nas_dataset",
|
|
type=str,
|
|
help="The path to load the architecture dataset (tiny-nas-benchmark).",
|
|
)
|
|
parser.add_argument("--print_freq", type=int, help="print frequency (default: 200)")
|
|
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
|
args = parser.parse_args()
|
|
# if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
|
if args.arch_nas_dataset is None or not os.path.isfile(args.arch_nas_dataset):
|
|
nas_bench = None
|
|
else:
|
|
print(
|
|
"{:} build NAS-Benchmark-API from {:}".format(
|
|
time_string(), args.arch_nas_dataset
|
|
)
|
|
)
|
|
nas_bench = API(args.arch_nas_dataset)
|
|
if args.rand_seed < 0:
|
|
save_dir, all_indexes, num = None, [], 500
|
|
for i in range(num):
|
|
print("{:} : {:03d}/{:03d}".format(time_string(), i, num))
|
|
args.rand_seed = random.randint(1, 100000)
|
|
save_dir, index = main(args, nas_bench)
|
|
all_indexes.append(index)
|
|
torch.save(all_indexes, save_dir / "results.pth")
|
|
else:
|
|
main(args, nas_bench)
|