126 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			126 lines
		
	
	
		
			4.6 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # functions for affine transformation
 | |
| import math, torch
 | |
| import numpy as np
 | |
| import torch.nn.functional as F
 | |
| 
 | |
| def identity2affine(full=False):
 | |
|   if not full:
 | |
|     parameters = torch.zeros((2,3))
 | |
|     parameters[0, 0] = parameters[1, 1] = 1
 | |
|   else:
 | |
|     parameters = torch.zeros((3,3))
 | |
|     parameters[0, 0] = parameters[1, 1] = parameters[2, 2] = 1
 | |
|   return parameters
 | |
| 
 | |
| def normalize_L(x, L):
 | |
|   return -1. + 2. * x / (L-1)
 | |
| 
 | |
| def denormalize_L(x, L):
 | |
|   return (x + 1.0) / 2.0 * (L-1)
 | |
| 
 | |
| def crop2affine(crop_box, W, H):
 | |
|   assert len(crop_box) == 4, 'Invalid crop-box : {:}'.format(crop_box)
 | |
|   parameters = torch.zeros(3,3)
 | |
|   x1, y1 = normalize_L(crop_box[0], W), normalize_L(crop_box[1], H)
 | |
|   x2, y2 = normalize_L(crop_box[2], W), normalize_L(crop_box[3], H)
 | |
|   parameters[0,0] = (x2-x1)/2
 | |
|   parameters[0,2] = (x2+x1)/2
 | |
| 
 | |
|   parameters[1,1] = (y2-y1)/2
 | |
|   parameters[1,2] = (y2+y1)/2
 | |
|   parameters[2,2] = 1
 | |
|   return parameters
 | |
| 
 | |
| def scale2affine(scalex, scaley):
 | |
|   parameters = torch.zeros(3,3)
 | |
|   parameters[0,0] = scalex
 | |
|   parameters[1,1] = scaley
 | |
|   parameters[2,2] = 1
 | |
|   return parameters
 | |
|  
 | |
| def offset2affine(offx, offy):
 | |
|   parameters = torch.zeros(3,3)
 | |
|   parameters[0,0] = parameters[1,1] = parameters[2,2] = 1
 | |
|   parameters[0,2] = offx
 | |
|   parameters[1,2] = offy
 | |
|   return parameters
 | |
| 
 | |
| def horizontalmirror2affine():
 | |
|   parameters = torch.zeros(3,3)
 | |
|   parameters[0,0] = -1
 | |
|   parameters[1,1] = parameters[2,2] = 1
 | |
|   return parameters
 | |
| 
 | |
| # clockwise rotate image = counterclockwise rotate the rectangle
 | |
| # degree is between [0, 360]
 | |
| def rotate2affine(degree):
 | |
|   assert degree >= 0 and degree <= 360, 'Invalid degree : {:}'.format(degree)
 | |
|   degree = degree / 180 * math.pi
 | |
|   parameters = torch.zeros(3,3)
 | |
|   parameters[0,0] =  math.cos(-degree)
 | |
|   parameters[0,1] = -math.sin(-degree)
 | |
|   parameters[1,0] =  math.sin(-degree)
 | |
|   parameters[1,1] =  math.cos(-degree)
 | |
|   parameters[2,2] = 1
 | |
|   return parameters
 | |
| 
 | |
| # shape is a tuple [H, W]
 | |
| def normalize_points(shape, points):
 | |
|   assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, 'invalid shape : {:}'.format(shape)  
 | |
|   assert isinstance(points, torch.Tensor) and (points.shape[0] == 2), 'points are wrong : {:}'.format(points.shape)
 | |
|   (H, W), points = shape, points.clone()
 | |
|   points[0, :] = normalize_L(points[0,:], W)
 | |
|   points[1, :] = normalize_L(points[1,:], H)
 | |
|   return points
 | |
| 
 | |
| # shape is a tuple [H, W]
 | |
| def normalize_points_batch(shape, points):
 | |
|   assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, 'invalid shape : {:}'.format(shape)  
 | |
|   assert isinstance(points, torch.Tensor) and (points.size(-1) == 2), 'points are wrong : {:}'.format(points.shape)
 | |
|   (H, W), points = shape, points.clone()
 | |
|   x = normalize_L(points[...,0], W)
 | |
|   y = normalize_L(points[...,1], H)
 | |
|   return torch.stack((x,y), dim=-1)
 | |
| 
 | |
| # shape is a tuple [H, W]
 | |
| def denormalize_points(shape, points):
 | |
|   assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, 'invalid shape : {:}'.format(shape)  
 | |
|   assert isinstance(points, torch.Tensor) and (points.shape[0] == 2), 'points are wrong : {:}'.format(points.shape)
 | |
|   (H, W), points = shape, points.clone()
 | |
|   points[0, :] = denormalize_L(points[0,:], W)
 | |
|   points[1, :] = denormalize_L(points[1,:], H)
 | |
|   return points
 | |
| 
 | |
| # shape is a tuple [H, W]
 | |
| def denormalize_points_batch(shape, points):
 | |
|   assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, 'invalid shape : {:}'.format(shape)  
 | |
|   assert isinstance(points, torch.Tensor) and (points.shape[-1] == 2), 'points are wrong : {:}'.format(points.shape)
 | |
|   (H, W), points = shape, points.clone()
 | |
|   x = denormalize_L(points[...,0], W)
 | |
|   y = denormalize_L(points[...,1], H)
 | |
|   return torch.stack((x,y), dim=-1)
 | |
| 
 | |
| # make target * theta = source
 | |
| def solve2theta(source, target):
 | |
|   source, target = source.clone(), target.clone()
 | |
|   oks = source[2, :] == 1
 | |
|   assert torch.sum(oks).item() >= 3, 'valid points : {:} is short'.format(oks)
 | |
|   if target.size(0) == 2: target = torch.cat((target, oks.unsqueeze(0).float()), dim=0)
 | |
|   source, target = source[:, oks], target[:, oks]
 | |
|   source, target = source.transpose(1,0), target.transpose(1,0)
 | |
|   assert source.size(1) == target.size(1) == 3
 | |
|   #X, residual, rank, s = np.linalg.lstsq(target.numpy(), source.numpy())
 | |
|   #theta = torch.Tensor(X.T[:2, :])
 | |
|   X_, qr = torch.gels(source, target)
 | |
|   theta = X_[:3, :2].transpose(1, 0)
 | |
|   return theta
 | |
| 
 | |
| # shape = [H,W]
 | |
| def affine2image(image, theta, shape):
 | |
|   C, H, W = image.size()
 | |
|   theta = theta[:2, :].unsqueeze(0)
 | |
|   grid_size = torch.Size([1, C, shape[0], shape[1]])
 | |
|   grid  = F.affine_grid(theta, grid_size)
 | |
|   affI  = F.grid_sample(image.unsqueeze(0), grid, mode='bilinear', padding_mode='border')
 | |
|   return affI.squeeze(0)
 |