58 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			58 lines
		
	
	
		
			2.7 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| # This file is for experimental usage
 | |
| import torch, random
 | |
| import numpy as np
 | |
| from copy import deepcopy
 | |
| import torch.nn as nn
 | |
| 
 | |
| # from utils  import obtain_accuracy
 | |
| from models import CellStructure
 | |
| from log_utils import time_string
 | |
| 
 | |
| 
 | |
| def evaluate_one_shot(model, xloader, api, cal_mode, seed=111):
 | |
|   print ('This is an old version of codes to use NAS-Bench-API, and should be modified to align with the new version. Please contact me for more details if you use this function.')
 | |
|   weights = deepcopy(model.state_dict())
 | |
|   model.train(cal_mode)
 | |
|   with torch.no_grad():
 | |
|     logits = nn.functional.log_softmax(model.arch_parameters, dim=-1)
 | |
|     archs = CellStructure.gen_all(model.op_names, model.max_nodes, False)
 | |
|     probs, accuracies, gt_accs_10_valid, gt_accs_10_test = [], [], [], []
 | |
|     loader_iter = iter(xloader)
 | |
|     random.seed(seed)
 | |
|     random.shuffle(archs)
 | |
|     for idx, arch in enumerate(archs):
 | |
|       arch_index = api.query_index_by_arch( arch )
 | |
|       metrics = api.get_more_info(arch_index, 'cifar10-valid', None, False, False)
 | |
|       gt_accs_10_valid.append( metrics['valid-accuracy'] )
 | |
|       metrics = api.get_more_info(arch_index, 'cifar10', None, False, False)
 | |
|       gt_accs_10_test.append( metrics['test-accuracy'] )
 | |
|       select_logits = []
 | |
|       for i, node_info in enumerate(arch.nodes):
 | |
|         for op, xin in node_info:
 | |
|           node_str = '{:}<-{:}'.format(i+1, xin)
 | |
|           op_index = model.op_names.index(op)
 | |
|           select_logits.append( logits[model.edge2index[node_str], op_index] )
 | |
|       cur_prob = sum(select_logits).item()
 | |
|       probs.append( cur_prob )
 | |
|     cor_prob_valid = np.corrcoef(probs, gt_accs_10_valid)[0,1]
 | |
|     cor_prob_test  = np.corrcoef(probs, gt_accs_10_test )[0,1]
 | |
|     print ('{:} correlation for probabilities : {:.6f} on CIFAR-10 validation and {:.6f} on CIFAR-10 test'.format(time_string(), cor_prob_valid, cor_prob_test))
 | |
|       
 | |
|     for idx, arch in enumerate(archs):
 | |
|       model.set_cal_mode('dynamic', arch)
 | |
|       try:
 | |
|         inputs, targets = next(loader_iter)
 | |
|       except:
 | |
|         loader_iter = iter(xloader)
 | |
|         inputs, targets = next(loader_iter)
 | |
|       _, logits = model(inputs.cuda())
 | |
|       _, preds  = torch.max(logits, dim=-1)
 | |
|       correct = (preds == targets.cuda() ).float()
 | |
|       accuracies.append( correct.mean().item() )
 | |
|       if idx != 0 and (idx % 500 == 0 or idx + 1 == len(archs)):
 | |
|         cor_accs_valid = np.corrcoef(accuracies, gt_accs_10_valid[:idx+1])[0,1]
 | |
|         cor_accs_test  = np.corrcoef(accuracies, gt_accs_10_test [:idx+1])[0,1]
 | |
|         print ('{:} {:05d}/{:05d} mode={:5s}, correlation : accs={:.5f} for CIFAR-10 valid, {:.5f} for CIFAR-10 test.'.format(time_string(), idx, len(archs), 'Train' if cal_mode else 'Eval', cor_accs_valid, cor_accs_test))
 | |
|   model.load_state_dict(weights)
 | |
|   return archs, probs, accuracies
 |