403 lines
19 KiB
Python
403 lines
19 KiB
Python
#####################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
|
|
#####################################################
|
|
import os, sys, time, argparse, collections
|
|
import numpy as np
|
|
import torch
|
|
from pathlib import Path
|
|
from collections import defaultdict, OrderedDict
|
|
from typing import Dict, Any, Text, List
|
|
|
|
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
|
if str(lib_dir) not in sys.path:
|
|
sys.path.insert(0, str(lib_dir))
|
|
from log_utils import AverageMeter, time_string, convert_secs2time
|
|
from config_utils import dict2config
|
|
|
|
# NAS-Bench-201 related module or function
|
|
from models import CellStructure, get_cell_based_tiny_net
|
|
from nas_201_api import NASBench201API, ArchResults, ResultsCount
|
|
from procedures import bench_pure_evaluate as pure_evaluate, get_nas_bench_loaders
|
|
|
|
api = NASBench201API("{:}/.torch/NAS-Bench-201-v1_0-e61699.pth".format(os.environ["HOME"]))
|
|
|
|
|
|
def create_result_count(
|
|
used_seed: int,
|
|
dataset: Text,
|
|
arch_config: Dict[Text, Any],
|
|
results: Dict[Text, Any],
|
|
dataloader_dict: Dict[Text, Any],
|
|
) -> ResultsCount:
|
|
xresult = ResultsCount(
|
|
dataset,
|
|
results["net_state_dict"],
|
|
results["train_acc1es"],
|
|
results["train_losses"],
|
|
results["param"],
|
|
results["flop"],
|
|
arch_config,
|
|
used_seed,
|
|
results["total_epoch"],
|
|
None,
|
|
)
|
|
net_config = dict2config(
|
|
{
|
|
"name": "infer.tiny",
|
|
"C": arch_config["channel"],
|
|
"N": arch_config["num_cells"],
|
|
"genotype": CellStructure.str2structure(arch_config["arch_str"]),
|
|
"num_classes": arch_config["class_num"],
|
|
},
|
|
None,
|
|
)
|
|
network = get_cell_based_tiny_net(net_config)
|
|
network.load_state_dict(xresult.get_net_param())
|
|
if "train_times" in results: # new version
|
|
xresult.update_train_info(
|
|
results["train_acc1es"], results["train_acc5es"], results["train_losses"], results["train_times"]
|
|
)
|
|
xresult.update_eval(results["valid_acc1es"], results["valid_losses"], results["valid_times"])
|
|
else:
|
|
if dataset == "cifar10-valid":
|
|
xresult.update_OLD_eval("x-valid", results["valid_acc1es"], results["valid_losses"])
|
|
loss, top1, top5, latencies = pure_evaluate(
|
|
dataloader_dict["{:}@{:}".format("cifar10", "test")], network.cuda()
|
|
)
|
|
xresult.update_OLD_eval("ori-test", {results["total_epoch"] - 1: top1}, {results["total_epoch"] - 1: loss})
|
|
xresult.update_latency(latencies)
|
|
elif dataset == "cifar10":
|
|
xresult.update_OLD_eval("ori-test", results["valid_acc1es"], results["valid_losses"])
|
|
loss, top1, top5, latencies = pure_evaluate(
|
|
dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda()
|
|
)
|
|
xresult.update_latency(latencies)
|
|
elif dataset == "cifar100" or dataset == "ImageNet16-120":
|
|
xresult.update_OLD_eval("ori-test", results["valid_acc1es"], results["valid_losses"])
|
|
loss, top1, top5, latencies = pure_evaluate(
|
|
dataloader_dict["{:}@{:}".format(dataset, "valid")], network.cuda()
|
|
)
|
|
xresult.update_OLD_eval("x-valid", {results["total_epoch"] - 1: top1}, {results["total_epoch"] - 1: loss})
|
|
loss, top1, top5, latencies = pure_evaluate(
|
|
dataloader_dict["{:}@{:}".format(dataset, "test")], network.cuda()
|
|
)
|
|
xresult.update_OLD_eval("x-test", {results["total_epoch"] - 1: top1}, {results["total_epoch"] - 1: loss})
|
|
xresult.update_latency(latencies)
|
|
else:
|
|
raise ValueError("invalid dataset name : {:}".format(dataset))
|
|
return xresult
|
|
|
|
|
|
def account_one_arch(
|
|
arch_index: int, arch_str: Text, checkpoints: List[Text], datasets: List[Text], dataloader_dict: Dict[Text, Any]
|
|
) -> ArchResults:
|
|
information = ArchResults(arch_index, arch_str)
|
|
|
|
for checkpoint_path in checkpoints:
|
|
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
|
used_seed = checkpoint_path.name.split("-")[-1].split(".")[0]
|
|
ok_dataset = 0
|
|
for dataset in datasets:
|
|
if dataset not in checkpoint:
|
|
print("Can not find {:} in arch-{:} from {:}".format(dataset, arch_index, checkpoint_path))
|
|
continue
|
|
else:
|
|
ok_dataset += 1
|
|
results = checkpoint[dataset]
|
|
assert results["finish-train"], "This {:} arch seed={:} does not finish train on {:} ::: {:}".format(
|
|
arch_index, used_seed, dataset, checkpoint_path
|
|
)
|
|
arch_config = {
|
|
"channel": results["channel"],
|
|
"num_cells": results["num_cells"],
|
|
"arch_str": arch_str,
|
|
"class_num": results["config"]["class_num"],
|
|
}
|
|
|
|
xresult = create_result_count(used_seed, dataset, arch_config, results, dataloader_dict)
|
|
information.update(dataset, int(used_seed), xresult)
|
|
if ok_dataset == 0:
|
|
raise ValueError("{:} does not find any data".format(checkpoint_path))
|
|
return information
|
|
|
|
|
|
def correct_time_related_info(arch_index: int, arch_info_full: ArchResults, arch_info_less: ArchResults):
|
|
# calibrate the latency based on NAS-Bench-201-v1_0-e61699.pth
|
|
cifar010_latency = (
|
|
api.get_latency(arch_index, "cifar10-valid", hp="200") + api.get_latency(arch_index, "cifar10", hp="200")
|
|
) / 2
|
|
arch_info_full.reset_latency("cifar10-valid", None, cifar010_latency)
|
|
arch_info_full.reset_latency("cifar10", None, cifar010_latency)
|
|
arch_info_less.reset_latency("cifar10-valid", None, cifar010_latency)
|
|
arch_info_less.reset_latency("cifar10", None, cifar010_latency)
|
|
|
|
cifar100_latency = api.get_latency(arch_index, "cifar100", hp="200")
|
|
arch_info_full.reset_latency("cifar100", None, cifar100_latency)
|
|
arch_info_less.reset_latency("cifar100", None, cifar100_latency)
|
|
|
|
image_latency = api.get_latency(arch_index, "ImageNet16-120", hp="200")
|
|
arch_info_full.reset_latency("ImageNet16-120", None, image_latency)
|
|
arch_info_less.reset_latency("ImageNet16-120", None, image_latency)
|
|
|
|
train_per_epoch_time = list(arch_info_less.query("cifar10-valid", 777).train_times.values())
|
|
train_per_epoch_time = sum(train_per_epoch_time) / len(train_per_epoch_time)
|
|
eval_ori_test_time, eval_x_valid_time = [], []
|
|
for key, value in arch_info_less.query("cifar10-valid", 777).eval_times.items():
|
|
if key.startswith("ori-test@"):
|
|
eval_ori_test_time.append(value)
|
|
elif key.startswith("x-valid@"):
|
|
eval_x_valid_time.append(value)
|
|
else:
|
|
raise ValueError("-- {:} --".format(key))
|
|
eval_ori_test_time, eval_x_valid_time = float(np.mean(eval_ori_test_time)), float(np.mean(eval_x_valid_time))
|
|
nums = {
|
|
"ImageNet16-120-train": 151700,
|
|
"ImageNet16-120-valid": 3000,
|
|
"ImageNet16-120-test": 6000,
|
|
"cifar10-valid-train": 25000,
|
|
"cifar10-valid-valid": 25000,
|
|
"cifar10-train": 50000,
|
|
"cifar10-test": 10000,
|
|
"cifar100-train": 50000,
|
|
"cifar100-test": 10000,
|
|
"cifar100-valid": 5000,
|
|
}
|
|
eval_per_sample = (eval_ori_test_time + eval_x_valid_time) / (nums["cifar10-valid-valid"] + nums["cifar10-test"])
|
|
for arch_info in [arch_info_less, arch_info_full]:
|
|
arch_info.reset_pseudo_train_times(
|
|
"cifar10-valid", None, train_per_epoch_time / nums["cifar10-valid-train"] * nums["cifar10-valid-train"]
|
|
)
|
|
arch_info.reset_pseudo_train_times(
|
|
"cifar10", None, train_per_epoch_time / nums["cifar10-valid-train"] * nums["cifar10-train"]
|
|
)
|
|
arch_info.reset_pseudo_train_times(
|
|
"cifar100", None, train_per_epoch_time / nums["cifar10-valid-train"] * nums["cifar100-train"]
|
|
)
|
|
arch_info.reset_pseudo_train_times(
|
|
"ImageNet16-120", None, train_per_epoch_time / nums["cifar10-valid-train"] * nums["ImageNet16-120-train"]
|
|
)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"cifar10-valid", None, "x-valid", eval_per_sample * nums["cifar10-valid-valid"]
|
|
)
|
|
arch_info.reset_pseudo_eval_times("cifar10-valid", None, "ori-test", eval_per_sample * nums["cifar10-test"])
|
|
arch_info.reset_pseudo_eval_times("cifar10", None, "ori-test", eval_per_sample * nums["cifar10-test"])
|
|
arch_info.reset_pseudo_eval_times("cifar100", None, "x-valid", eval_per_sample * nums["cifar100-valid"])
|
|
arch_info.reset_pseudo_eval_times("cifar100", None, "x-test", eval_per_sample * nums["cifar100-valid"])
|
|
arch_info.reset_pseudo_eval_times("cifar100", None, "ori-test", eval_per_sample * nums["cifar100-test"])
|
|
arch_info.reset_pseudo_eval_times(
|
|
"ImageNet16-120", None, "x-valid", eval_per_sample * nums["ImageNet16-120-valid"]
|
|
)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"ImageNet16-120", None, "x-test", eval_per_sample * nums["ImageNet16-120-valid"]
|
|
)
|
|
arch_info.reset_pseudo_eval_times(
|
|
"ImageNet16-120", None, "ori-test", eval_per_sample * nums["ImageNet16-120-test"]
|
|
)
|
|
# arch_info_full.debug_test()
|
|
# arch_info_less.debug_test()
|
|
return arch_info_full, arch_info_less
|
|
|
|
|
|
def simplify(save_dir, meta_file, basestr, target_dir):
|
|
meta_infos = torch.load(meta_file, map_location="cpu")
|
|
meta_archs = meta_infos["archs"] # a list of architecture strings
|
|
meta_num_archs = meta_infos["total"]
|
|
assert meta_num_archs == len(meta_archs), "invalid number of archs : {:} vs {:}".format(
|
|
meta_num_archs, len(meta_archs)
|
|
)
|
|
|
|
sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr))))
|
|
print("{:} find {:} directories used to save checkpoints".format(time_string(), len(sub_model_dirs)))
|
|
|
|
subdir2archs, num_evaluated_arch = collections.OrderedDict(), 0
|
|
num_seeds = defaultdict(lambda: 0)
|
|
for index, sub_dir in enumerate(sub_model_dirs):
|
|
xcheckpoints = list(sub_dir.glob("arch-*-seed-*.pth"))
|
|
arch_indexes = set()
|
|
for checkpoint in xcheckpoints:
|
|
temp_names = checkpoint.name.split("-")
|
|
assert (
|
|
len(temp_names) == 4 and temp_names[0] == "arch" and temp_names[2] == "seed"
|
|
), "invalid checkpoint name : {:}".format(checkpoint.name)
|
|
arch_indexes.add(temp_names[1])
|
|
subdir2archs[sub_dir] = sorted(list(arch_indexes))
|
|
num_evaluated_arch += len(arch_indexes)
|
|
# count number of seeds for each architecture
|
|
for arch_index in arch_indexes:
|
|
num_seeds[len(list(sub_dir.glob("arch-{:}-seed-*.pth".format(arch_index))))] += 1
|
|
print(
|
|
"{:} There are {:5d} architectures that have been evaluated ({:} in total).".format(
|
|
time_string(), num_evaluated_arch, meta_num_archs
|
|
)
|
|
)
|
|
for key in sorted(list(num_seeds.keys())):
|
|
print(
|
|
"{:} There are {:5d} architectures that are evaluated {:} times.".format(time_string(), num_seeds[key], key)
|
|
)
|
|
|
|
dataloader_dict = get_nas_bench_loaders(6)
|
|
to_save_simply = save_dir / "simplifies"
|
|
to_save_allarc = save_dir / "simplifies" / "architectures"
|
|
if not to_save_simply.exists():
|
|
to_save_simply.mkdir(parents=True, exist_ok=True)
|
|
if not to_save_allarc.exists():
|
|
to_save_allarc.mkdir(parents=True, exist_ok=True)
|
|
|
|
assert (save_dir / target_dir) in subdir2archs, "can not find {:}".format(target_dir)
|
|
arch2infos, datasets = {}, ("cifar10-valid", "cifar10", "cifar100", "ImageNet16-120")
|
|
evaluated_indexes = set()
|
|
target_full_dir = save_dir / target_dir
|
|
target_less_dir = save_dir / "{:}-LESS".format(target_dir)
|
|
arch_indexes = subdir2archs[target_full_dir]
|
|
num_seeds = defaultdict(lambda: 0)
|
|
end_time = time.time()
|
|
arch_time = AverageMeter()
|
|
for idx, arch_index in enumerate(arch_indexes):
|
|
checkpoints = list(target_full_dir.glob("arch-{:}-seed-*.pth".format(arch_index)))
|
|
ckps_less = list(target_less_dir.glob("arch-{:}-seed-*.pth".format(arch_index)))
|
|
# create the arch info for each architecture
|
|
try:
|
|
arch_info_full = account_one_arch(
|
|
arch_index, meta_archs[int(arch_index)], checkpoints, datasets, dataloader_dict
|
|
)
|
|
arch_info_less = account_one_arch(
|
|
arch_index, meta_archs[int(arch_index)], ckps_less, datasets, dataloader_dict
|
|
)
|
|
num_seeds[len(checkpoints)] += 1
|
|
except:
|
|
print("Loading {:} failed, : {:}".format(arch_index, checkpoints))
|
|
continue
|
|
assert int(arch_index) not in evaluated_indexes, "conflict arch-index : {:}".format(arch_index)
|
|
assert 0 <= int(arch_index) < len(meta_archs), "invalid arch-index {:} (not found in meta_archs)".format(
|
|
arch_index
|
|
)
|
|
arch_info = {"full": arch_info_full, "less": arch_info_less}
|
|
evaluated_indexes.add(int(arch_index))
|
|
arch2infos[int(arch_index)] = arch_info
|
|
# to correct the latency and training_time info.
|
|
arch_info_full, arch_info_less = correct_time_related_info(int(arch_index), arch_info_full, arch_info_less)
|
|
to_save_data = OrderedDict(full=arch_info_full.state_dict(), less=arch_info_less.state_dict())
|
|
torch.save(to_save_data, to_save_allarc / "{:}-FULL.pth".format(arch_index))
|
|
arch_info["full"].clear_params()
|
|
arch_info["less"].clear_params()
|
|
torch.save(to_save_data, to_save_allarc / "{:}-SIMPLE.pth".format(arch_index))
|
|
# measure elapsed time
|
|
arch_time.update(time.time() - end_time)
|
|
end_time = time.time()
|
|
need_time = "{:}".format(convert_secs2time(arch_time.avg * (len(arch_indexes) - idx - 1), True))
|
|
print(
|
|
"{:} {:} [{:03d}/{:03d}] : {:} still need {:}".format(
|
|
time_string(), target_dir, idx, len(arch_indexes), arch_index, need_time
|
|
)
|
|
)
|
|
# measure time
|
|
xstrs = ["{:}:{:03d}".format(key, num_seeds[key]) for key in sorted(list(num_seeds.keys()))]
|
|
print("{:} {:} done : {:}".format(time_string(), target_dir, xstrs))
|
|
final_infos = {
|
|
"meta_archs": meta_archs,
|
|
"total_archs": meta_num_archs,
|
|
"basestr": basestr,
|
|
"arch2infos": arch2infos,
|
|
"evaluated_indexes": evaluated_indexes,
|
|
}
|
|
save_file_name = to_save_simply / "{:}.pth".format(target_dir)
|
|
torch.save(final_infos, save_file_name)
|
|
print(
|
|
"Save {:} / {:} architecture results into {:}.".format(len(evaluated_indexes), meta_num_archs, save_file_name)
|
|
)
|
|
|
|
|
|
def merge_all(save_dir, meta_file, basestr):
|
|
meta_infos = torch.load(meta_file, map_location="cpu")
|
|
meta_archs = meta_infos["archs"]
|
|
meta_num_archs = meta_infos["total"]
|
|
assert meta_num_archs == len(meta_archs), "invalid number of archs : {:} vs {:}".format(
|
|
meta_num_archs, len(meta_archs)
|
|
)
|
|
|
|
sub_model_dirs = sorted(list(save_dir.glob("*-*-{:}".format(basestr))))
|
|
print("{:} find {:} directories used to save checkpoints".format(time_string(), len(sub_model_dirs)))
|
|
for index, sub_dir in enumerate(sub_model_dirs):
|
|
arch_info_files = sorted(list(sub_dir.glob("arch-*-seed-*.pth")))
|
|
print(
|
|
"The {:02d}/{:02d}-th directory : {:} : {:} runs.".format(
|
|
index, len(sub_model_dirs), sub_dir, len(arch_info_files)
|
|
)
|
|
)
|
|
|
|
arch2infos, evaluated_indexes = dict(), set()
|
|
for IDX, sub_dir in enumerate(sub_model_dirs):
|
|
ckp_path = sub_dir.parent / "simplifies" / "{:}.pth".format(sub_dir.name)
|
|
if ckp_path.exists():
|
|
sub_ckps = torch.load(ckp_path, map_location="cpu")
|
|
assert sub_ckps["total_archs"] == meta_num_archs and sub_ckps["basestr"] == basestr
|
|
xarch2infos = sub_ckps["arch2infos"]
|
|
xevalindexs = sub_ckps["evaluated_indexes"]
|
|
for eval_index in xevalindexs:
|
|
assert eval_index not in evaluated_indexes and eval_index not in arch2infos
|
|
# arch2infos[eval_index] = xarch2infos[eval_index].state_dict()
|
|
arch2infos[eval_index] = {
|
|
"full": xarch2infos[eval_index]["full"].state_dict(),
|
|
"less": xarch2infos[eval_index]["less"].state_dict(),
|
|
}
|
|
evaluated_indexes.add(eval_index)
|
|
print(
|
|
"{:} [{:03d}/{:03d}] merge data from {:} with {:} models.".format(
|
|
time_string(), IDX, len(sub_model_dirs), ckp_path, len(xevalindexs)
|
|
)
|
|
)
|
|
else:
|
|
raise ValueError("Can not find {:}".format(ckp_path))
|
|
# print ('{:} [{:03d}/{:03d}] can not find {:}, skip.'.format(time_string(), IDX, len(subdir2archs), ckp_path))
|
|
|
|
evaluated_indexes = sorted(list(evaluated_indexes))
|
|
print("Finally, there are {:} architectures that have been trained and evaluated.".format(len(evaluated_indexes)))
|
|
|
|
to_save_simply = save_dir / "simplifies"
|
|
if not to_save_simply.exists():
|
|
to_save_simply.mkdir(parents=True, exist_ok=True)
|
|
final_infos = {
|
|
"meta_archs": meta_archs,
|
|
"total_archs": meta_num_archs,
|
|
"arch2infos": arch2infos,
|
|
"evaluated_indexes": evaluated_indexes,
|
|
}
|
|
save_file_name = to_save_simply / "{:}-final-infos.pth".format(basestr)
|
|
torch.save(final_infos, save_file_name)
|
|
print(
|
|
"Save {:} / {:} architecture results into {:}.".format(len(evaluated_indexes), meta_num_archs, save_file_name)
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
parser = argparse.ArgumentParser(
|
|
description="NAS-BENCH-201", formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
|
)
|
|
parser.add_argument("--mode", type=str, choices=["cal", "merge"], help="The running mode for this script.")
|
|
parser.add_argument(
|
|
"--base_save_dir",
|
|
type=str,
|
|
default="./output/NAS-BENCH-201-4",
|
|
help="The base-name of folder to save checkpoints and log.",
|
|
)
|
|
parser.add_argument("--target_dir", type=str, help="The target directory.")
|
|
parser.add_argument("--max_node", type=int, default=4, help="The maximum node in a cell.")
|
|
parser.add_argument("--channel", type=int, default=16, help="The number of channels.")
|
|
parser.add_argument("--num_cells", type=int, default=5, help="The number of cells in one stage.")
|
|
args = parser.parse_args()
|
|
|
|
save_dir = Path(args.base_save_dir)
|
|
meta_path = save_dir / "meta-node-{:}.pth".format(args.max_node)
|
|
assert save_dir.exists(), "invalid save dir path : {:}".format(save_dir)
|
|
assert meta_path.exists(), "invalid saved meta path : {:}".format(meta_path)
|
|
print("start the statistics of our nas-benchmark from {:} using {:}.".format(save_dir, args.target_dir))
|
|
basestr = "C{:}-N{:}".format(args.channel, args.num_cells)
|
|
|
|
if args.mode == "cal":
|
|
simplify(save_dir, meta_path, basestr, args.target_dir)
|
|
elif args.mode == "merge":
|
|
merge_all(save_dir, meta_path, basestr)
|
|
else:
|
|
raise ValueError("invalid mode : {:}".format(args.mode))
|