103 lines
3.6 KiB
Python
103 lines
3.6 KiB
Python
#####################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
|
|
#####################################################
|
|
|
|
import inspect
|
|
import os
|
|
import pprint
|
|
import logging
|
|
|
|
import qlib
|
|
from qlib.utils import init_instance_by_config
|
|
from qlib.workflow import R
|
|
from qlib.utils import flatten_dict
|
|
from qlib.log import get_module_logger
|
|
|
|
|
|
def set_log_basic_config(filename=None, format=None, level=None):
|
|
"""
|
|
Set the basic configuration for the logging system.
|
|
See details at https://docs.python.org/3/library/logging.html#logging.basicConfig
|
|
:param filename: str or None
|
|
The path to save the logs.
|
|
:param format: the logging format
|
|
:param level: int
|
|
:return: Logger
|
|
Logger object.
|
|
"""
|
|
from qlib.config import C
|
|
|
|
if level is None:
|
|
level = C.logging_level
|
|
|
|
if format is None:
|
|
format = C.logging_config["formatters"]["logger_format"]["format"]
|
|
|
|
logging.basicConfig(filename=filename, format=format, level=level)
|
|
|
|
|
|
def update_gpu(config, gpu):
|
|
config = config.copy()
|
|
if "task" in config and "model" in config["task"]:
|
|
if "GPU" in config["task"]["model"]:
|
|
config["task"]["model"]["GPU"] = gpu
|
|
elif "kwargs" in config["task"]["model"] and "GPU" in config["task"]["model"]["kwargs"]:
|
|
config["task"]["model"]["kwargs"]["GPU"] = gpu
|
|
elif "model" in config:
|
|
if "GPU" in config["model"]:
|
|
config["model"]["GPU"] = gpu
|
|
elif "kwargs" in config["model"] and "GPU" in config["model"]["kwargs"]:
|
|
config["model"]["kwargs"]["GPU"] = gpu
|
|
elif "kwargs" in config and "GPU" in config["kwargs"]:
|
|
config["kwargs"]["GPU"] = gpu
|
|
elif "GPU" in config:
|
|
config["GPU"] = gpu
|
|
return config
|
|
|
|
|
|
def update_market(config, market):
|
|
config = config.copy()
|
|
config["market"] = market
|
|
config["data_handler_config"]["instruments"] = market
|
|
return config
|
|
|
|
|
|
def run_exp(task_config, dataset, experiment_name, recorder_name, uri):
|
|
|
|
model = init_instance_by_config(task_config["model"])
|
|
model_fit_kwargs = dict(dataset=dataset)
|
|
|
|
# Let's start the experiment.
|
|
with R.start(experiment_name=experiment_name, recorder_name=recorder_name, uri=uri):
|
|
# Setup log
|
|
recorder_root_dir = R.get_recorder().get_local_dir()
|
|
log_file = os.path.join(recorder_root_dir, "{:}.log".format(experiment_name))
|
|
set_log_basic_config(log_file)
|
|
logger = get_module_logger("q.run_exp")
|
|
logger.info("task_config::\n{:}".format(pprint.pformat(task_config, indent=2)))
|
|
logger.info("[{:}] - [{:}]: {:}".format(experiment_name, recorder_name, uri))
|
|
logger.info("dataset={:}".format(dataset))
|
|
|
|
# Train model
|
|
R.log_params(**flatten_dict(task_config))
|
|
if "save_path" in inspect.getfullargspec(model.fit).args:
|
|
model_fit_kwargs["save_path"] = os.path.join(recorder_root_dir, "model.ckps")
|
|
model.fit(**model_fit_kwargs)
|
|
# Get the recorder
|
|
recorder = R.get_recorder()
|
|
R.save_objects(**{"model.pkl": model})
|
|
|
|
# Generate records: prediction, backtest, and analysis
|
|
for record in task_config["record"]:
|
|
record = record.copy()
|
|
if record["class"] == "SignalRecord":
|
|
srconf = {"model": model, "dataset": dataset, "recorder": recorder}
|
|
record["kwargs"].update(srconf)
|
|
sr = init_instance_by_config(record)
|
|
sr.generate()
|
|
else:
|
|
rconf = {"recorder": recorder}
|
|
record["kwargs"].update(rconf)
|
|
ar = init_instance_by_config(record)
|
|
ar.generate()
|