autodl-projects/lib/xlayers/super_mlp.py
2021-03-18 20:46:50 +08:00

106 lines
3.3 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
#####################################################
import torch
import torch.nn as nn
import math
from typing import Optional, Union
import spaces
from .super_module import SuperModule
from .super_module import SuperRunMode
IntSpaceType = Union[int, spaces.Integer, spaces.Categorical]
BoolSpaceType = Union[bool, spaces.Categorical]
class SuperLinear(SuperModule):
"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`"""
def __init__(
self,
in_features: IntSpaceType,
out_features: IntSpaceType,
bias: BoolSpaceType = True,
) -> None:
super(SuperLinear, self).__init__()
# the raw input args
self._in_features = in_features
self._out_features = out_features
self._bias = bias
# weights to be optimized
self._super_weight = torch.nn.Parameter(
torch.Tensor(self.out_features, self.in_features)
)
if self.bias:
self._super_bias = torch.nn.Parameter(torch.Tensor(self.out_features))
else:
self.register_parameter("_super_bias", None)
self.reset_parameters()
@property
def in_features(self):
return spaces.get_max(self._in_features)
@property
def out_features(self):
return spaces.get_max(self._out_features)
@property
def bias(self):
return spaces.has_categorical(self._bias, True)
def abstract_search_space(self):
root_node = spaces.VirtualNode(id(self))
if not spaces.is_determined(self._in_features):
root_node.append("_in_features", self._in_features)
if not spaces.is_determined(self._out_features):
root_node.append("_out_features", self._out_features)
if not spaces.is_determined(self._bias):
root_node.append("_bias", self._bias)
return root_node
def reset_parameters(self) -> None:
nn.init.kaiming_uniform_(self._super_weight, a=math.sqrt(5))
if self.bias:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self._super_weight)
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(self._super_bias, -bound, bound)
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
return F.linear(input, self._super_weight, self._super_bias)
def extra_repr(self) -> str:
return "in_features={:}, out_features={:}, bias={:}".format(
self.in_features, self.out_features, self.bias
)
class SuperMLP(nn.Module):
# MLP: FC -> Activation -> Drop -> FC -> Drop
def __init__(
self,
in_features,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer=nn.GELU,
drop: Optional[float] = None,
):
super(MLP, self).__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop or 0)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x