221 lines
7.6 KiB
Python
221 lines
7.6 KiB
Python
#####################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
|
#####################################################
|
|
# python exps/LFNA/basic-maml.py --env_version v1 #
|
|
# python exps/LFNA/basic-maml.py --env_version v2 #
|
|
#####################################################
|
|
import sys, time, copy, torch, random, argparse
|
|
from tqdm import tqdm
|
|
from copy import deepcopy
|
|
from pathlib import Path
|
|
|
|
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
|
|
if str(lib_dir) not in sys.path:
|
|
sys.path.insert(0, str(lib_dir))
|
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint
|
|
from log_utils import time_string
|
|
from log_utils import AverageMeter, convert_secs2time
|
|
|
|
from utils import split_str2indexes
|
|
|
|
from procedures.advanced_main import basic_train_fn, basic_eval_fn
|
|
from procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
|
|
from datasets.synthetic_core import get_synthetic_env
|
|
from models.xcore import get_model
|
|
from xlayers import super_core
|
|
|
|
from lfna_utils import lfna_setup, TimeData
|
|
|
|
|
|
class MAML:
|
|
"""A LFNA meta-model that uses the MLP as delta-net."""
|
|
|
|
def __init__(self, container, criterion, meta_lr, inner_lr=0.01, inner_step=1):
|
|
self.criterion = criterion
|
|
self.container = container
|
|
self.meta_optimizer = torch.optim.Adam(
|
|
self.container.parameters(), lr=meta_lr, amsgrad=True
|
|
)
|
|
self.inner_lr = inner_lr
|
|
self.inner_step = inner_step
|
|
|
|
def adapt(self, model, dataset):
|
|
# create a container for the future timestamp
|
|
y_hat = model.forward_with_container(dataset.x, self.container)
|
|
loss = self.criterion(y_hat, dataset.y)
|
|
grads = torch.autograd.grad(loss, self.container.parameters())
|
|
|
|
fast_container = self.container.additive(
|
|
[-self.inner_lr * grad for grad in grads]
|
|
)
|
|
import pdb
|
|
|
|
pdb.set_trace()
|
|
w_container.requires_grad_(True)
|
|
containers = [w_container]
|
|
for idx, dataset in enumerate(seq_datasets):
|
|
x, y = dataset.x, dataset.y
|
|
y_hat = model.forward_with_container(x, containers[-1])
|
|
loss = criterion(y_hat, y)
|
|
gradients = torch.autograd.grad(loss, containers[-1].tensors)
|
|
with torch.no_grad():
|
|
flatten_w = containers[-1].flatten().view(-1, 1)
|
|
flatten_g = containers[-1].flatten(gradients).view(-1, 1)
|
|
input_statistics = torch.tensor([x.mean(), x.std()]).view(1, 2)
|
|
input_statistics = input_statistics.expand(flatten_w.numel(), -1)
|
|
delta_inputs = torch.cat((flatten_w, flatten_g, input_statistics), dim=-1)
|
|
delta = self.delta_net(delta_inputs).view(-1)
|
|
delta = torch.clamp(delta, -0.5, 0.5)
|
|
unflatten_delta = containers[-1].unflatten(delta)
|
|
future_container = containers[-1].no_grad_clone().additive(unflatten_delta)
|
|
# future_container = containers[-1].additive(unflatten_delta)
|
|
containers.append(future_container)
|
|
# containers = containers[1:]
|
|
meta_loss = []
|
|
temp_containers = []
|
|
for idx, dataset in enumerate(seq_datasets):
|
|
if idx == 0:
|
|
continue
|
|
current_container = containers[idx]
|
|
y_hat = model.forward_with_container(dataset.x, current_container)
|
|
loss = criterion(y_hat, dataset.y)
|
|
meta_loss.append(loss)
|
|
temp_containers.append((dataset.timestamp, current_container, -loss.item()))
|
|
meta_loss = sum(meta_loss)
|
|
w_container.requires_grad_(False)
|
|
# meta_loss.backward()
|
|
# self.meta_optimizer.step()
|
|
return meta_loss, temp_containers
|
|
|
|
def step(self):
|
|
torch.nn.utils.clip_grad_norm_(self.delta_net.parameters(), 1.0)
|
|
self.meta_optimizer.step()
|
|
|
|
def zero_grad(self):
|
|
self.meta_optimizer.zero_grad()
|
|
|
|
|
|
def main(args):
|
|
logger, env_info = lfna_setup(args)
|
|
|
|
total_time = env_info["total"]
|
|
for i in range(total_time):
|
|
for xkey in ("timestamp", "x", "y"):
|
|
nkey = "{:}-{:}".format(i, xkey)
|
|
assert nkey in env_info, "{:} no in {:}".format(nkey, list(env_info.keys()))
|
|
train_time_bar = total_time // 2
|
|
base_model = get_model(
|
|
dict(model_type="simple_mlp"),
|
|
act_cls="leaky_relu",
|
|
norm_cls="identity",
|
|
input_dim=1,
|
|
output_dim=1,
|
|
)
|
|
|
|
w_container = base_model.get_w_container()
|
|
criterion = torch.nn.MSELoss()
|
|
print("There are {:} weights.".format(w_container.numel()))
|
|
|
|
maml = MAML(w_container, criterion, args.meta_lr, args.inner_lr, args.inner_step)
|
|
|
|
# meta-training
|
|
per_epoch_time, start_time = AverageMeter(), time.time()
|
|
for iepoch in range(args.epochs):
|
|
|
|
need_time = "Time Left: {:}".format(
|
|
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
|
|
)
|
|
logger.log(
|
|
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
|
+ need_time
|
|
)
|
|
|
|
maml.zero_grad()
|
|
|
|
all_meta_losses = []
|
|
for ibatch in range(args.meta_batch):
|
|
sampled_timestamp = random.randint(0, train_time_bar)
|
|
past_dataset = TimeData(
|
|
sampled_timestamp,
|
|
env_info["{:}-x".format(sampled_timestamp)],
|
|
env_info["{:}-y".format(sampled_timestamp)],
|
|
)
|
|
future_dataset = TimeData(
|
|
sampled_timestamp + 1,
|
|
env_info["{:}-x".format(sampled_timestamp + 1)],
|
|
env_info["{:}-y".format(sampled_timestamp + 1)],
|
|
)
|
|
maml.adapt(base_model, past_dataset)
|
|
import pdb
|
|
|
|
pdb.set_trace()
|
|
|
|
meta_loss = torch.stack(all_meta_losses).mean()
|
|
meta_loss.backward()
|
|
adaptor.step()
|
|
|
|
debug_str = pool.debug_info(debug_timestamp)
|
|
logger.log("meta-loss: {:.4f}".format(meta_loss.item()))
|
|
|
|
per_epoch_time.update(time.time() - start_time)
|
|
start_time = time.time()
|
|
|
|
logger.log("-" * 200 + "\n")
|
|
logger.close()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser("Use the data in the past.")
|
|
parser.add_argument(
|
|
"--save_dir",
|
|
type=str,
|
|
default="./outputs/lfna-synthetic/maml",
|
|
help="The checkpoint directory.",
|
|
)
|
|
parser.add_argument(
|
|
"--env_version",
|
|
type=str,
|
|
required=True,
|
|
help="The synthetic enviornment version.",
|
|
)
|
|
parser.add_argument(
|
|
"--meta_lr",
|
|
type=float,
|
|
default=0.01,
|
|
help="The learning rate for the MAML optimizer (default is Adam)",
|
|
)
|
|
parser.add_argument(
|
|
"--inner_lr",
|
|
type=float,
|
|
default=0.01,
|
|
help="The learning rate for the inner optimization",
|
|
)
|
|
parser.add_argument(
|
|
"--inner_step", type=int, default=1, help="The inner loop steps for MAML."
|
|
)
|
|
parser.add_argument(
|
|
"--meta_batch",
|
|
type=int,
|
|
default=5,
|
|
help="The batch size for the meta-model",
|
|
)
|
|
parser.add_argument(
|
|
"--epochs",
|
|
type=int,
|
|
default=1000,
|
|
help="The total number of epochs.",
|
|
)
|
|
parser.add_argument(
|
|
"--workers",
|
|
type=int,
|
|
default=4,
|
|
help="The number of data loading workers (default: 4)",
|
|
)
|
|
# Random Seed
|
|
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
|
args = parser.parse_args()
|
|
if args.rand_seed is None or args.rand_seed < 0:
|
|
args.rand_seed = random.randint(1, 100000)
|
|
assert args.save_dir is not None, "The save dir argument can not be None"
|
|
main(args)
|