autodl-projects/exps/LFNA/lfna_models.py
2021-05-13 07:57:41 +00:00

118 lines
4.0 KiB
Python

#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
#####################################################
import copy
import torch
import torch.nn.functional as F
from xlayers import super_core
from xlayers import trunc_normal_
from models.xcore import get_model
class HyperNet(super_core.SuperModule):
"""The hyper-network."""
def __init__(
self,
shape_container,
layer_embeding,
task_embedding,
num_tasks,
return_container=True,
):
super(HyperNet, self).__init__()
self._shape_container = shape_container
self._num_layers = len(shape_container)
self._numel_per_layer = []
for ilayer in range(self._num_layers):
self._numel_per_layer.append(shape_container[ilayer].numel())
self.register_parameter(
"_super_layer_embed",
torch.nn.Parameter(torch.Tensor(self._num_layers, layer_embeding)),
)
self.register_parameter(
"_super_task_embed",
torch.nn.Parameter(torch.Tensor(num_tasks, task_embedding)),
)
trunc_normal_(self._super_layer_embed, std=0.02)
trunc_normal_(self._super_task_embed, std=0.02)
model_kwargs = dict(
config=dict(model_type="dual_norm_mlp"),
input_dim=layer_embeding + task_embedding,
output_dim=max(self._numel_per_layer),
hidden_dims=[(layer_embeding + task_embedding) * 2] * 3,
act_cls="gelu",
norm_cls="layer_norm_1d",
dropout=0.2,
)
self._generator = get_model(**model_kwargs)
self._return_container = return_container
print("generator: {:}".format(self._generator))
def forward_raw(self, task_embed_id):
layer_embed = self._super_layer_embed
task_embed = (
self._super_task_embed[task_embed_id]
.view(1, -1)
.expand(self._num_layers, -1)
)
joint_embed = torch.cat((task_embed, layer_embed), dim=-1)
weights = self._generator(joint_embed)
if self._return_container:
weights = torch.split(weights, 1)
return self._shape_container.translate(weights)
else:
return weights
def forward_candidate(self, input):
raise NotImplementedError
def extra_repr(self) -> str:
return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape))
class HyperNet_VX(super_core.SuperModule):
def __init__(self, shape_container, input_embeding, return_container=True):
super(HyperNet_VX, self).__init__()
self._shape_container = shape_container
self._num_layers = len(shape_container)
self._numel_per_layer = []
for ilayer in range(self._num_layers):
self._numel_per_layer.append(shape_container[ilayer].numel())
self.register_parameter(
"_super_layer_embed",
torch.nn.Parameter(torch.Tensor(self._num_layers, input_embeding)),
)
trunc_normal_(self._super_layer_embed, std=0.02)
model_kwargs = dict(
input_dim=input_embeding,
output_dim=max(self._numel_per_layer),
hidden_dim=input_embeding * 4,
act_cls="sigmoid",
norm_cls="identity",
)
self._generator = get_model(dict(model_type="simple_mlp"), **model_kwargs)
self._return_container = return_container
print("generator: {:}".format(self._generator))
def forward_raw(self, input):
weights = self._generator(self._super_layer_embed)
if self._return_container:
weights = torch.split(weights, 1)
return self._shape_container.translate(weights)
else:
return weights
def forward_candidate(self, input):
raise NotImplementedError
def extra_repr(self) -> str:
return "(_super_layer_embed): {:}".format(list(self._super_layer_embed.shape))