autodl-projects/lib/nas_201_api/api.py
2020-01-16 01:43:07 +11:00

516 lines
24 KiB
Python

##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
############################################################################################
# NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search, ICLR 2020 #
############################################################################################
# NAS-Bench-201-v1_0-e61699.pth : 6219 architectures are trained once, 1621 architectures are trained twice, 7785 architectures are trained three times. `LESS` only supports CIFAR10-VALID.
#
#
#
import os, sys, copy, random, torch, numpy as np
from collections import OrderedDict, defaultdict
def print_information(information, extra_info=None, show=False):
dataset_names = information.get_dataset_names()
strings = [information.arch_str, 'datasets : {:}, extra-info : {:}'.format(dataset_names, extra_info)]
def metric2str(loss, acc):
return 'loss = {:.3f}, top1 = {:.2f}%'.format(loss, acc)
for ida, dataset in enumerate(dataset_names):
#flop, param, latency = information.get_comput_costs(dataset)
metric = information.get_comput_costs(dataset)
flop, param, latency = metric['flops'], metric['params'], metric['latency']
str1 = '{:14s} FLOP={:6.2f} M, Params={:.3f} MB, latency={:} ms.'.format(dataset, flop, param, '{:.2f}'.format(latency*1000) if latency is not None and latency > 0 else None)
train_info = information.get_metrics(dataset, 'train')
if dataset == 'cifar10-valid':
valid_info = information.get_metrics(dataset, 'x-valid')
str2 = '{:14s} train : [{:}], valid : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy']))
elif dataset == 'cifar10':
test__info = information.get_metrics(dataset, 'ori-test')
str2 = '{:14s} train : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy']))
else:
valid_info = information.get_metrics(dataset, 'x-valid')
test__info = information.get_metrics(dataset, 'x-test')
str2 = '{:14s} train : [{:}], valid : [{:}], test : [{:}]'.format(dataset, metric2str(train_info['loss'], train_info['accuracy']), metric2str(valid_info['loss'], valid_info['accuracy']), metric2str(test__info['loss'], test__info['accuracy']))
strings += [str1, str2]
if show: print('\n'.join(strings))
return strings
class NASBench201API(object):
def __init__(self, file_path_or_dict, verbose=True):
if isinstance(file_path_or_dict, str):
if verbose: print('try to create the NAS-Bench-201 api from {:}'.format(file_path_or_dict))
assert os.path.isfile(file_path_or_dict), 'invalid path : {:}'.format(file_path_or_dict)
file_path_or_dict = torch.load(file_path_or_dict)
elif isinstance(file_path_or_dict, dict):
file_path_or_dict = copy.deepcopy( file_path_or_dict )
else: raise ValueError('invalid type : {:} not in [str, dict]'.format(type(file_path_or_dict)))
assert isinstance(file_path_or_dict, dict), 'It should be a dict instead of {:}'.format(type(file_path_or_dict))
keys = ('meta_archs', 'arch2infos', 'evaluated_indexes')
for key in keys: assert key in file_path_or_dict, 'Can not find key[{:}] in the dict'.format(key)
self.meta_archs = copy.deepcopy( file_path_or_dict['meta_archs'] )
self.arch2infos_less = OrderedDict()
self.arch2infos_full = OrderedDict()
for xkey in sorted(list(file_path_or_dict['arch2infos'].keys())):
all_info = file_path_or_dict['arch2infos'][xkey]
self.arch2infos_less[xkey] = ArchResults.create_from_state_dict( all_info['less'] )
self.arch2infos_full[xkey] = ArchResults.create_from_state_dict( all_info['full'] )
self.evaluated_indexes = sorted(list(file_path_or_dict['evaluated_indexes']))
self.archstr2index = {}
for idx, arch in enumerate(self.meta_archs):
#assert arch.tostr() not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch.tostr()])
assert arch not in self.archstr2index, 'This [{:}]-th arch {:} already in the dict ({:}).'.format(idx, arch, self.archstr2index[arch])
self.archstr2index[ arch ] = idx
def __getitem__(self, index):
return copy.deepcopy( self.meta_archs[index] )
def __len__(self):
return len(self.meta_archs)
def __repr__(self):
return ('{name}({num}/{total} architectures)'.format(name=self.__class__.__name__, num=len(self.evaluated_indexes), total=len(self.meta_archs)))
def random(self):
return random.randint(0, len(self.meta_archs)-1)
def query_index_by_arch(self, arch):
if isinstance(arch, str):
if arch in self.archstr2index: arch_index = self.archstr2index[ arch ]
else : arch_index = -1
elif hasattr(arch, 'tostr'):
if arch.tostr() in self.archstr2index: arch_index = self.archstr2index[ arch.tostr() ]
else : arch_index = -1
else: arch_index = -1
return arch_index
def reload(self, archive_root, index):
assert os.path.isdir(archive_root), 'invalid directory : {:}'.format(archive_root)
xfile_path = os.path.join(archive_root, '{:06d}-FULL.pth'.format(index))
assert 0 <= index < len(self.meta_archs), 'invalid index of {:}'.format(index)
assert os.path.isfile(xfile_path), 'invalid data path : {:}'.format(xfile_path)
xdata = torch.load(xfile_path)
assert isinstance(xdata, dict) and 'full' in xdata and 'less' in xdata, 'invalid format of data in {:}'.format(xfile_path)
self.arch2infos_less[index] = ArchResults.create_from_state_dict( xdata['less'] )
self.arch2infos_full[index] = ArchResults.create_from_state_dict( xdata['full'] )
def query_by_arch(self, arch, use_12epochs_result=False):
if isinstance(arch, int):
arch_index = arch
else:
arch_index = self.query_index_by_arch(arch)
if arch_index == -1: return None # the following two lines are used to support few training epochs
if use_12epochs_result: arch2infos = self.arch2infos_less
else : arch2infos = self.arch2infos_full
if arch_index in arch2infos:
strings = print_information(arch2infos[ arch_index ], 'arch-index={:}'.format(arch_index))
return '\n'.join(strings)
else:
print ('Find this arch-index : {:}, but this arch is not evaluated.'.format(arch_index))
return None
# query information with the training of 12 epochs or 200 epochs
# if dataname is None, return the ArchResults
# else, return a dict with all trials on that dataset (the key is the seed)
def query_by_index(self, arch_index, dataname=None, use_12epochs_result=False):
if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less
else : basestr, arch2infos = '200epochs', self.arch2infos_full
assert arch_index in arch2infos, 'arch_index [{:}] does not in arch2info with {:}'.format(arch_index, basestr)
archInfo = copy.deepcopy( arch2infos[ arch_index ] )
if dataname is None: return archInfo
else:
assert dataname in archInfo.get_dataset_names(), 'invalid dataset-name : {:}'.format(dataname)
info = archInfo.query(dataname)
return info
def query_meta_info_by_index(self, arch_index, use_12epochs_result=False):
if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less
else : basestr, arch2infos = '200epochs', self.arch2infos_full
assert arch_index in arch2infos, 'arch_index [{:}] does not in arch2info with {:}'.format(arch_index, basestr)
archInfo = copy.deepcopy( arch2infos[ arch_index ] )
return archInfo
def find_best(self, dataset, metric_on_set, FLOP_max=None, Param_max=None, use_12epochs_result=False):
if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less
else : basestr, arch2infos = '200epochs', self.arch2infos_full
best_index, highest_accuracy = -1, None
for i, idx in enumerate(self.evaluated_indexes):
info = arch2infos[idx].get_comput_costs(dataset)
flop, param, latency = info['flops'], info['params'], info['latency']
if FLOP_max is not None and flop > FLOP_max : continue
if Param_max is not None and param > Param_max: continue
xinfo = arch2infos[idx].get_metrics(dataset, metric_on_set)
loss, accuracy = xinfo['loss'], xinfo['accuracy']
if best_index == -1:
best_index, highest_accuracy = idx, accuracy
elif highest_accuracy < accuracy:
best_index, highest_accuracy = idx, accuracy
return best_index, highest_accuracy
# return the topology structure of the `index`-th architecture
def arch(self, index):
assert 0 <= index < len(self.meta_archs), 'invalid index : {:} vs. {:}.'.format(index, len(self.meta_archs))
return copy.deepcopy(self.meta_archs[index])
# obtain the trained weights of the `index`-th architecture on `dataset` with the seed of `seed`
def get_net_param(self, index, dataset, seed, use_12epochs_result=False):
if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less
else : basestr, arch2infos = '200epochs', self.arch2infos_full
archresult = arch2infos[index]
return archresult.get_net_param(dataset, seed)
# obtain the cost metric for the `index`-th architecture on a dataset
def get_cost_info(self, index, dataset, use_12epochs_result=False):
if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less
else : basestr, arch2infos = '200epochs', self.arch2infos_full
archresult = arch2infos[index]
return archresult.get_comput_costs(dataset)
# obtain the metric for the `index`-th architecture
def get_more_info(self, index, dataset, iepoch=None, use_12epochs_result=False, is_random=True):
if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less
else : basestr, arch2infos = '200epochs', self.arch2infos_full
archresult = arch2infos[index]
if dataset == 'cifar10-valid':
train_info = archresult.get_metrics(dataset, 'train' , iepoch=iepoch, is_random=is_random)
valid_info = archresult.get_metrics(dataset, 'x-valid' , iepoch=iepoch, is_random=is_random)
try:
test__info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
except:
test__info = None
total = train_info['iepoch'] + 1
xifo = {'train-loss' : train_info['loss'],
'train-accuracy': train_info['accuracy'],
'train-per-time': None if train_info['all_time'] is None else train_info['all_time'] / total,
'train-all-time': train_info['all_time'],
'valid-loss' : valid_info['loss'],
'valid-accuracy': valid_info['accuracy'],
'valid-all-time': valid_info['all_time'],
'valid-per-time': None if valid_info['all_time'] is None else valid_info['all_time'] / total}
if test__info is not None:
xifo['test-loss'] = test__info['loss']
xifo['test-accuracy'] = test__info['accuracy']
return xifo
else:
train_info = archresult.get_metrics(dataset, 'train' , iepoch=iepoch, is_random=is_random)
try:
if dataset == 'cifar10':
test__info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
else:
test__info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random)
except:
valid_info = None
try:
valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random)
except:
valid_info = None
try:
est_valid_info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=is_random)
except:
est_valid_info = None
xifo = {'train-loss' : train_info['loss'],
'train-accuracy': train_info['accuracy']}
if valid_info is not None:
xifo['test-loss'] = test__info['loss'],
xifo['test-accuracy'] = test__info['accuracy']
if valid_info is not None:
xifo['valid-loss'] = valid_info['loss']
xifo['valid-accuracy'] = valid_info['accuracy']
if est_valid_info is not None:
xifo['est-valid-loss'] = est_valid_info['loss']
xifo['est-valid-accuracy'] = est_valid_info['accuracy']
return xifo
def show(self, index=-1):
if index < 0: # show all architectures
print(self)
for i, idx in enumerate(self.evaluated_indexes):
print('\n' + '-' * 10 + ' The ({:5d}/{:5d}) {:06d}-th architecture! '.format(i, len(self.evaluated_indexes), idx) + '-'*10)
print('arch : {:}'.format(self.meta_archs[idx]))
strings = print_information(self.arch2infos_full[idx])
print('>' * 40 + ' 200 epochs ' + '>' * 40)
print('\n'.join(strings))
strings = print_information(self.arch2infos_less[idx])
print('>' * 40 + ' 12 epochs ' + '>' * 40)
print('\n'.join(strings))
print('<' * 40 + '------------' + '<' * 40)
else:
if 0 <= index < len(self.meta_archs):
if index not in self.evaluated_indexes: print('The {:}-th architecture has not been evaluated or not saved.'.format(index))
else:
strings = print_information(self.arch2infos_full[index])
print('>' * 40 + ' 200 epochs ' + '>' * 40)
print('\n'.join(strings))
strings = print_information(self.arch2infos_less[index])
print('>' * 40 + ' 12 epochs ' + '>' * 40)
print('\n'.join(strings))
print('<' * 40 + '------------' + '<' * 40)
else:
print('This index ({:}) is out of range (0~{:}).'.format(index, len(self.meta_archs)))
class ArchResults(object):
def __init__(self, arch_index, arch_str):
self.arch_index = int(arch_index)
self.arch_str = copy.deepcopy(arch_str)
self.all_results = dict()
self.dataset_seed = dict()
self.clear_net_done = False
def get_comput_costs(self, dataset):
x_seeds = self.dataset_seed[dataset]
results = [self.all_results[ (dataset, seed) ] for seed in x_seeds]
flops = [result.flop for result in results]
params = [result.params for result in results]
lantencies = [result.get_latency() for result in results]
lantencies = [x for x in lantencies if x > 0]
mean_latency = np.mean(lantencies) if len(lantencies) > 0 else None
time_infos = defaultdict(list)
for result in results:
time_info = result.get_times()
for key, value in time_info.items(): time_infos[key].append( value )
info = {'flops' : np.mean(flops),
'params' : np.mean(params),
'latency': mean_latency}
for key, value in time_infos.items():
if len(value) > 0 and value[0] is not None:
info[key] = np.mean(value)
else: info[key] = None
return info
def get_metrics(self, dataset, setname, iepoch=None, is_random=False):
x_seeds = self.dataset_seed[dataset]
results = [self.all_results[ (dataset, seed) ] for seed in x_seeds]
infos = defaultdict(list)
for result in results:
if setname == 'train':
info = result.get_train(iepoch)
else:
info = result.get_eval(setname, iepoch)
for key, value in info.items(): infos[key].append( value )
return_info = dict()
if is_random:
index = random.randint(0, len(results)-1)
for key, value in infos.items(): return_info[key] = value[index]
else:
for key, value in infos.items():
if len(value) > 0 and value[0] is not None:
return_info[key] = np.mean(value)
else: return_info[key] = None
return return_info
def show(self, is_print=False):
return print_information(self, None, is_print)
def get_dataset_names(self):
return list(self.dataset_seed.keys())
def get_net_param(self, dataset, seed=None):
if seed is None:
x_seeds = self.dataset_seed[dataset]
return {seed: self.all_results[(dataset, seed)].get_net_param() for seed in x_seeds}
else:
return self.all_results[(dataset, seed)].get_net_param()
def query(self, dataset, seed=None):
if seed is None:
x_seeds = self.dataset_seed[dataset]
return {seed: self.all_results[ (dataset, seed) ] for seed in x_seeds}
else:
return self.all_results[ (dataset, seed) ]
def arch_idx_str(self):
return '{:06d}'.format(self.arch_index)
def update(self, dataset_name, seed, result):
if dataset_name not in self.dataset_seed:
self.dataset_seed[dataset_name] = []
assert seed not in self.dataset_seed[dataset_name], '{:}-th arch alreadly has this seed ({:}) on {:}'.format(self.arch_index, seed, dataset_name)
self.dataset_seed[ dataset_name ].append( seed )
self.dataset_seed[ dataset_name ] = sorted( self.dataset_seed[ dataset_name ] )
assert (dataset_name, seed) not in self.all_results
self.all_results[ (dataset_name, seed) ] = result
self.clear_net_done = False
def state_dict(self):
state_dict = dict()
for key, value in self.__dict__.items():
if key == 'all_results': # contain the class of ResultsCount
xvalue = dict()
assert isinstance(value, dict), 'invalid type of value for {:} : {:}'.format(key, type(value))
for _k, _v in value.items():
assert isinstance(_v, ResultsCount), 'invalid type of value for {:}/{:} : {:}'.format(key, _k, type(_v))
xvalue[_k] = _v.state_dict()
else:
xvalue = value
state_dict[key] = xvalue
return state_dict
def load_state_dict(self, state_dict):
new_state_dict = dict()
for key, value in state_dict.items():
if key == 'all_results': # to convert to the class of ResultsCount
xvalue = dict()
assert isinstance(value, dict), 'invalid type of value for {:} : {:}'.format(key, type(value))
for _k, _v in value.items():
xvalue[_k] = ResultsCount.create_from_state_dict(_v)
else: xvalue = value
new_state_dict[key] = xvalue
self.__dict__.update(new_state_dict)
@staticmethod
def create_from_state_dict(state_dict_or_file):
x = ArchResults(-1, -1)
if isinstance(state_dict_or_file, str): # a file path
state_dict = torch.load(state_dict_or_file)
elif isinstance(state_dict_or_file, dict):
state_dict = state_dict_or_file
else:
raise ValueError('invalid type of state_dict_or_file : {:}'.format(type(state_dict_or_file)))
x.load_state_dict(state_dict)
return x
def clear_params(self):
for key, result in self.all_results.items():
result.net_state_dict = None
self.clear_net_done = True
def __repr__(self):
return ('{name}(arch-index={index}, arch={arch}, {num} runs, clear={clear})'.format(name=self.__class__.__name__, index=self.arch_index, arch=self.arch_str, num=len(self.all_results), clear=self.clear_net_done))
class ResultsCount(object):
def __init__(self, name, state_dict, train_accs, train_losses, params, flop, arch_config, seed, epochs, latency):
self.name = name
self.net_state_dict = state_dict
self.train_acc1es = copy.deepcopy(train_accs)
self.train_acc5es = None
self.train_losses = copy.deepcopy(train_losses)
self.train_times = None
self.arch_config = copy.deepcopy(arch_config)
self.params = params
self.flop = flop
self.seed = seed
self.epochs = epochs
self.latency = latency
# evaluation results
self.reset_eval()
def update_train_info(self, train_acc1es, train_acc5es, train_losses, train_times):
self.train_acc1es = train_acc1es
self.train_acc5es = train_acc5es
self.train_losses = train_losses
self.train_times = train_times
def reset_eval(self):
self.eval_names = []
self.eval_acc1es = {}
self.eval_times = {}
self.eval_losses = {}
def update_latency(self, latency):
self.latency = copy.deepcopy( latency )
def update_eval(self, accs, losses, times): # new version
data_names = set([x.split('@')[0] for x in accs.keys()])
for data_name in data_names:
assert data_name not in self.eval_names, '{:} has already been added into eval-names'.format(data_name)
self.eval_names.append( data_name )
for iepoch in range(self.epochs):
xkey = '{:}@{:}'.format(data_name, iepoch)
self.eval_acc1es[ xkey ] = accs[ xkey ]
self.eval_losses[ xkey ] = losses[ xkey ]
self.eval_times [ xkey ] = times[ xkey ]
def update_OLD_eval(self, name, accs, losses): # old version
assert name not in self.eval_names, '{:} has already added'.format(name)
self.eval_names.append( name )
for iepoch in range(self.epochs):
if iepoch in accs:
self.eval_acc1es['{:}@{:}'.format(name,iepoch)] = accs[iepoch]
self.eval_losses['{:}@{:}'.format(name,iepoch)] = losses[iepoch]
def __repr__(self):
num_eval = len(self.eval_names)
set_name = '[' + ', '.join(self.eval_names) + ']'
return ('{name}({xname}, arch={arch}, FLOP={flop:.2f}M, Param={param:.3f}MB, seed={seed}, {num_eval} eval-sets: {set_name})'.format(name=self.__class__.__name__, xname=self.name, arch=self.arch_config['arch_str'], flop=self.flop, param=self.params, seed=self.seed, num_eval=num_eval, set_name=set_name))
def get_latency(self):
if self.latency is None: return -1
else: return sum(self.latency) / len(self.latency)
def get_times(self):
if self.train_times is not None and isinstance(self.train_times, dict):
train_times = list( self.train_times.values() )
time_info = {'T-train@epoch': np.mean(train_times), 'T-train@total': np.sum(train_times)}
for name in self.eval_names:
xtimes = [self.eval_times['{:}@{:}'.format(name,i)] for i in range(self.epochs)]
time_info['T-{:}@epoch'.format(name)] = np.mean(xtimes)
time_info['T-{:}@total'.format(name)] = np.sum(xtimes)
else:
time_info = {'T-train@epoch': None, 'T-train@total': None }
for name in self.eval_names:
time_info['T-{:}@epoch'.format(name)] = None
time_info['T-{:}@total'.format(name)] = None
return time_info
def get_eval_set(self):
return self.eval_names
def get_train(self, iepoch=None):
if iepoch is None: iepoch = self.epochs-1
assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs)
if self.train_times is not None:
xtime = self.train_times[iepoch]
atime = sum([self.train_times[i] for i in range(iepoch+1)])
else: xtime, atime = None, None
return {'iepoch' : iepoch,
'loss' : self.train_losses[iepoch],
'accuracy': self.train_acc1es[iepoch],
'cur_time': xtime,
'all_time': atime}
def get_eval(self, name, iepoch=None):
if iepoch is None: iepoch = self.epochs-1
assert 0 <= iepoch < self.epochs, 'invalid iepoch={:} < {:}'.format(iepoch, self.epochs)
if isinstance(self.eval_times,dict) and len(self.eval_times) > 0:
xtime = self.eval_times['{:}@{:}'.format(name,iepoch)]
atime = sum([self.eval_times['{:}@{:}'.format(name,i)] for i in range(iepoch+1)])
else: xtime, atime = None, None
return {'iepoch' : iepoch,
'loss' : self.eval_losses['{:}@{:}'.format(name,iepoch)],
'accuracy': self.eval_acc1es['{:}@{:}'.format(name,iepoch)],
'cur_time': xtime,
'all_time': atime}
def get_net_param(self):
return self.net_state_dict
def get_config(self, str2structure):
#return copy.deepcopy(self.arch_config)
return {'name': 'infer.tiny', 'C': self.arch_config['channel'], \
'N' : self.arch_config['num_cells'], \
'genotype': str2structure(self.arch_config['arch_str']), 'num_classes': self.arch_config['class_num']}
def state_dict(self):
_state_dict = {key: value for key, value in self.__dict__.items()}
return _state_dict
def load_state_dict(self, state_dict):
self.__dict__.update(state_dict)
@staticmethod
def create_from_state_dict(state_dict):
x = ResultsCount(None, None, None, None, None, None, None, None, None, None)
x.load_state_dict(state_dict)
return x