autodl-projects/lib/trade_models/quant_transformer.py
2021-03-03 13:57:48 +00:00

457 lines
13 KiB
Python
Executable File

##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 #
##################################################
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import pandas as pd
import copy
from functools import partial
from sklearn.metrics import roc_auc_score, mean_squared_error
from typing import Optional
import logging
from qlib.utils import (
unpack_archive_with_buffer,
save_multiple_parts_file,
create_save_path,
drop_nan_by_y_index,
)
from qlib.log import get_module_logger, TimeInspector
import torch
import torch.nn as nn
import torch.optim as optim
import layers as xlayers
from qlib.model.base import Model
from qlib.data.dataset import DatasetH
from qlib.data.dataset.handler import DataHandlerLP
class QuantTransformer(Model):
"""Transformer-based Quant Model
"""
def __init__(
self,
d_feat=6,
hidden_size=64,
num_layers=2,
dropout=0.0,
n_epochs=200,
lr=0.001,
metric="",
batch_size=2000,
early_stop=20,
loss="mse",
optimizer="adam",
GPU=0,
seed=None,
**kwargs
):
# Set logger.
self.logger = get_module_logger("QuantTransformer")
self.logger.info("QuantTransformer pytorch version...")
# set hyper-parameters.
self.d_feat = d_feat
self.hidden_size = hidden_size
self.num_layers = num_layers
self.dropout = dropout
self.n_epochs = n_epochs
self.lr = lr
self.metric = metric
self.batch_size = batch_size
self.early_stop = early_stop
self.optimizer = optimizer.lower()
self.loss = loss
self.device = torch.device("cuda:{:}".format(GPU) if torch.cuda.is_available() else "cpu")
self.use_gpu = torch.cuda.is_available()
self.seed = seed
self.logger.info(
"GRU parameters setting:"
"\nd_feat : {}"
"\nhidden_size : {}"
"\nnum_layers : {}"
"\ndropout : {}"
"\nn_epochs : {}"
"\nlr : {}"
"\nmetric : {}"
"\nbatch_size : {}"
"\nearly_stop : {}"
"\noptimizer : {}"
"\nloss_type : {}"
"\nvisible_GPU : {}"
"\nuse_GPU : {}"
"\nseed : {}".format(
d_feat,
hidden_size,
num_layers,
dropout,
n_epochs,
lr,
metric,
batch_size,
early_stop,
optimizer.lower(),
loss,
GPU,
self.use_gpu,
seed,
)
)
if self.seed is not None:
np.random.seed(self.seed)
torch.manual_seed(self.seed)
self.model = TransformerModel(d_feat=self.d_feat)
if optimizer.lower() == "adam":
self.train_optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
elif optimizer.lower() == "gd":
self.train_optimizer = optim.SGD(self.model.parameters(), lr=self.lr)
else:
raise NotImplementedError("optimizer {:} is not supported!".format(optimizer))
self.fitted = False
self.model.to(self.device)
def mse(self, pred, label):
loss = (pred - label) ** 2
return torch.mean(loss)
def loss_fn(self, pred, label):
mask = ~torch.isnan(label)
if self.loss == "mse":
return self.mse(pred[mask], label[mask])
raise ValueError("unknown loss `%s`" % self.loss)
def metric_fn(self, pred, label):
mask = torch.isfinite(label)
if self.metric == "" or self.metric == "loss":
return -self.loss_fn(pred[mask], label[mask])
raise ValueError("unknown metric `%s`" % self.metric)
def train_epoch(self, x_train, y_train):
x_train_values = x_train.values
y_train_values = np.squeeze(y_train.values)
self.model.train()
indices = np.arange(len(x_train_values))
np.random.shuffle(indices)
for i in range(len(indices))[:: self.batch_size]:
if len(indices) - i < self.batch_size:
break
feature = torch.from_numpy(x_train_values[indices[i : i + self.batch_size]]).float().to(self.device)
label = torch.from_numpy(y_train_values[indices[i : i + self.batch_size]]).float().to(self.device)
pred = self.model(feature)
loss = self.loss_fn(pred, label)
self.train_optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_value_(self.model.parameters(), 3.0)
self.train_optimizer.step()
def test_epoch(self, data_x, data_y):
# prepare training data
x_values = data_x.values
y_values = np.squeeze(data_y.values)
self.model.eval()
scores = []
losses = []
indices = np.arange(len(x_values))
for i in range(len(indices))[:: self.batch_size]:
if len(indices) - i < self.batch_size:
break
feature = torch.from_numpy(x_values[indices[i : i + self.batch_size]]).float().to(self.device)
label = torch.from_numpy(y_values[indices[i : i + self.batch_size]]).float().to(self.device)
pred = self.model(feature)
loss = self.loss_fn(pred, label)
losses.append(loss.item())
score = self.metric_fn(pred, label)
scores.append(score.item())
return np.mean(losses), np.mean(scores)
def fit(
self,
dataset: DatasetH,
evals_result=dict(),
verbose=True,
save_path=None,
):
df_train, df_valid, df_test = dataset.prepare(
["train", "valid", "test"],
col_set=["feature", "label"],
data_key=DataHandlerLP.DK_L,
)
x_train, y_train = df_train["feature"], df_train["label"]
x_valid, y_valid = df_valid["feature"], df_valid["label"]
if save_path == None:
save_path = create_save_path(save_path)
stop_steps = 0
train_loss = 0
best_score = -np.inf
best_epoch = 0
evals_result["train"] = []
evals_result["valid"] = []
# train
self.logger.info("training...")
self.fitted = True
for step in range(self.n_epochs):
self.logger.info("Epoch%d:", step)
self.logger.info("training...")
self.train_epoch(x_train, y_train)
self.logger.info("evaluating...")
train_loss, train_score = self.test_epoch(x_train, y_train)
val_loss, val_score = self.test_epoch(x_valid, y_valid)
self.logger.info("train %.6f, valid %.6f" % (train_score, val_score))
evals_result["train"].append(train_score)
evals_result["valid"].append(val_score)
if val_score > best_score:
best_score = val_score
stop_steps = 0
best_epoch = step
best_param = copy.deepcopy(self.model.state_dict())
else:
stop_steps += 1
if stop_steps >= self.early_stop:
self.logger.info("early stop")
break
self.logger.info("best score: %.6lf @ %d" % (best_score, best_epoch))
self.model.load_state_dict(best_param)
torch.save(best_param, save_path)
if self.use_gpu:
torch.cuda.empty_cache()
def predict(self, dataset):
if not self.fitted:
raise ValueError("model is not fitted yet!")
x_test = dataset.prepare("test", col_set="feature")
index = x_test.index
self.model.eval()
x_values = x_test.values
sample_num = x_values.shape[0]
preds = []
for begin in range(sample_num)[:: self.batch_size]:
if sample_num - begin < self.batch_size:
end = sample_num
else:
end = begin + self.batch_size
x_batch = torch.from_numpy(x_values[begin:end]).float().to(self.device)
with torch.no_grad():
if self.use_gpu:
pred = self.model(x_batch).detach().cpu().numpy()
else:
pred = self.model(x_batch).detach().numpy()
preds.append(pred)
return pd.Series(np.concatenate(preds), index=index)
# Real Model
class MLP(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super(MLP, self).__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
super(Attention, self).__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super(Block, self).__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = xlayers.DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = MLP(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class SimpleEmbed(nn.Module):
def __init__(self, d_feat, embed_dim):
super(SimpleEmbed, self).__init__()
self.d_feat = d_feat
self.proj = nn.Linear(d_feat, embed_dim)
def forward(self, x):
x = x.reshape(len(x), self.d_feat, -1) # [N, F*T] -> [N, F, T]
x = x.permute(0, 2, 1) # [N, F, T] -> [N, T, F]
out = self.proj(x)
return out
class TransformerModel(nn.Module):
def __init__(self,
d_feat: int,
embed_dim: int = 64,
depth: int = 4,
num_heads: int = 4,
mlp_ratio: float = 4.,
qkv_bias: bool = True,
qk_scale: Optional[float] = None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=None):
"""
Args:
d_feat (int, tuple): input image size
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
qk_scale (float): override default qk scale of head_dim ** -0.5 if set
drop_rate (float): dropout rate
attn_drop_rate (float): attention dropout rate
drop_path_rate (float): stochastic depth rate
norm_layer: (nn.Module): normalization layer
"""
super(TransformerModel, self).__init__()
self.embed_dim = embed_dim
self.num_features = embed_dim
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
self.input_embed = SimpleEmbed(d_feat, embed_dim=embed_dim)
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = xlayers.PositionalEncoder(d_model=embed_dim, max_seq_len=65)
self.pos_drop = nn.Dropout(p=drop_rate)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer)
for i in range(depth)])
self.norm = norm_layer(embed_dim)
# regression head
self.head = nn.Linear(self.num_features, 1)
xlayers.trunc_normal_(self.cls_token, std=.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
xlayers.trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward_features(self, x):
batch, flatten_size = x.shape
feats = self.input_embed(x) # batch * 60 * 64
cls_tokens = self.cls_token.expand(batch, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
feats_w_ct = torch.cat((cls_tokens, feats), dim=1)
feats_w_tp = self.pos_embed(feats_w_ct)
feats_w_tp = self.pos_drop(feats_w_tp)
xfeats = feats_w_tp
for block in self.blocks:
xfeats = block(xfeats)
xfeats = self.norm(xfeats)[:, 0]
return xfeats
def forward(self, x):
feats = self.forward_features(x)
predicts = self.head(feats).squeeze(-1)
return predicts