27 lines
903 B
Python
27 lines
903 B
Python
import torch, copy, random
|
|
import torch.utils.data as data
|
|
|
|
|
|
class SearchDataset(data.Dataset):
|
|
|
|
def __init__(self, name, data, train_split, valid_split):
|
|
self.datasetname = name
|
|
self.data = data
|
|
self.train_split = train_split.copy()
|
|
self.valid_split = valid_split.copy()
|
|
self.length = len(self.train_split)
|
|
|
|
def __repr__(self):
|
|
return ('{name}(name={datasetname}, length={length})'.format(name=self.__class__.__name__, **self.__dict__))
|
|
|
|
def __len__(self):
|
|
return self.length
|
|
|
|
def __getitem__(self, index):
|
|
assert index >= 0 and index < self.length, 'invalid index = {:}'.format(index)
|
|
train_index = self.train_split[index]
|
|
valid_index = random.choice( self.valid_split )
|
|
train_image, train_label = self.data[train_index]
|
|
valid_image, valid_label = self.data[valid_index]
|
|
return train_image, train_label, valid_image, valid_label
|