181 lines
7.0 KiB
Python
181 lines
7.0 KiB
Python
import os, sys, torch
|
|
import os.path as osp
|
|
import numpy as np
|
|
import torchvision.datasets as dset
|
|
import torch.backends.cudnn as cudnn
|
|
import torchvision.transforms as transforms
|
|
from PIL import Image
|
|
from .DownsampledImageNet import ImageNet16
|
|
|
|
|
|
Dataset2Class = {'cifar10' : 10,
|
|
'cifar100': 100,
|
|
'imagenet-1k-s':1000,
|
|
'imagenet-1k' : 1000,
|
|
'ImageNet16' : 1000,
|
|
'ImageNet16-150': 150,
|
|
'ImageNet16-120': 120,
|
|
'ImageNet16-200': 200}
|
|
|
|
|
|
class CUTOUT(object):
|
|
|
|
def __init__(self, length):
|
|
self.length = length
|
|
|
|
def __repr__(self):
|
|
return ('{name}(length={length})'.format(name=self.__class__.__name__, **self.__dict__))
|
|
|
|
def __call__(self, img):
|
|
h, w = img.size(1), img.size(2)
|
|
mask = np.ones((h, w), np.float32)
|
|
y = np.random.randint(h)
|
|
x = np.random.randint(w)
|
|
|
|
y1 = np.clip(y - self.length // 2, 0, h)
|
|
y2 = np.clip(y + self.length // 2, 0, h)
|
|
x1 = np.clip(x - self.length // 2, 0, w)
|
|
x2 = np.clip(x + self.length // 2, 0, w)
|
|
|
|
mask[y1: y2, x1: x2] = 0.
|
|
mask = torch.from_numpy(mask)
|
|
mask = mask.expand_as(img)
|
|
img *= mask
|
|
return img
|
|
|
|
|
|
imagenet_pca = {
|
|
'eigval': np.asarray([0.2175, 0.0188, 0.0045]),
|
|
'eigvec': np.asarray([
|
|
[-0.5675, 0.7192, 0.4009],
|
|
[-0.5808, -0.0045, -0.8140],
|
|
[-0.5836, -0.6948, 0.4203],
|
|
])
|
|
}
|
|
|
|
|
|
class Lighting(object):
|
|
def __init__(self, alphastd,
|
|
eigval=imagenet_pca['eigval'],
|
|
eigvec=imagenet_pca['eigvec']):
|
|
self.alphastd = alphastd
|
|
assert eigval.shape == (3,)
|
|
assert eigvec.shape == (3, 3)
|
|
self.eigval = eigval
|
|
self.eigvec = eigvec
|
|
|
|
def __call__(self, img):
|
|
if self.alphastd == 0.:
|
|
return img
|
|
rnd = np.random.randn(3) * self.alphastd
|
|
rnd = rnd.astype('float32')
|
|
v = rnd
|
|
old_dtype = np.asarray(img).dtype
|
|
v = v * self.eigval
|
|
v = v.reshape((3, 1))
|
|
inc = np.dot(self.eigvec, v).reshape((3,))
|
|
img = np.add(img, inc)
|
|
if old_dtype == np.uint8:
|
|
img = np.clip(img, 0, 255)
|
|
img = Image.fromarray(img.astype(old_dtype), 'RGB')
|
|
return img
|
|
|
|
def __repr__(self):
|
|
return self.__class__.__name__ + '()'
|
|
|
|
|
|
def get_datasets(name, root, cutout):
|
|
|
|
if name == 'cifar10':
|
|
mean = [x / 255 for x in [125.3, 123.0, 113.9]]
|
|
std = [x / 255 for x in [63.0, 62.1, 66.7]]
|
|
elif name == 'cifar100':
|
|
mean = [x / 255 for x in [129.3, 124.1, 112.4]]
|
|
std = [x / 255 for x in [68.2, 65.4, 70.4]]
|
|
elif name.startswith('imagenet-1k'):
|
|
mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]
|
|
elif name.startswith('ImageNet16'):
|
|
mean = [x / 255 for x in [122.68, 116.66, 104.01]]
|
|
std = [x / 255 for x in [63.22, 61.26 , 65.09]]
|
|
else:
|
|
raise TypeError("Unknow dataset : {:}".format(name))
|
|
|
|
# Data Argumentation
|
|
if name == 'cifar10' or name == 'cifar100':
|
|
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4), transforms.ToTensor(), transforms.Normalize(mean, std)]
|
|
if cutout > 0 : lists += [CUTOUT(cutout)]
|
|
train_transform = transforms.Compose(lists)
|
|
test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])
|
|
xshape = (1, 3, 32, 32)
|
|
elif name.startswith('ImageNet16'):
|
|
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(16, padding=2), transforms.ToTensor(), transforms.Normalize(mean, std)]
|
|
if cutout > 0 : lists += [CUTOUT(cutout)]
|
|
train_transform = transforms.Compose(lists)
|
|
test_transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)])
|
|
xshape = (1, 3, 16, 16)
|
|
elif name == 'tiered':
|
|
lists = [transforms.RandomHorizontalFlip(), transforms.RandomCrop(80, padding=4), transforms.ToTensor(), transforms.Normalize(mean, std)]
|
|
if cutout > 0 : lists += [CUTOUT(cutout)]
|
|
train_transform = transforms.Compose(lists)
|
|
test_transform = transforms.Compose([transforms.CenterCrop(80), transforms.ToTensor(), transforms.Normalize(mean, std)])
|
|
xshape = (1, 3, 32, 32)
|
|
elif name.startswith('imagenet-1k'):
|
|
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
if name == 'imagenet-1k':
|
|
xlists = [transforms.RandomResizedCrop(224)]
|
|
xlists.append(
|
|
transforms.ColorJitter(
|
|
brightness=0.4,
|
|
contrast=0.4,
|
|
saturation=0.4,
|
|
hue=0.2))
|
|
xlists.append( Lighting(0.1))
|
|
elif name == 'imagenet-1k-s':
|
|
xlists = [transforms.RandomResizedCrop(224, scale=(0.2, 1.0))]
|
|
else: raise ValueError('invalid name : {:}'.format(name))
|
|
xlists.append( transforms.RandomHorizontalFlip(p=0.5) )
|
|
xlists.append( transforms.ToTensor() )
|
|
xlists.append( normalize )
|
|
train_transform = transforms.Compose(xlists)
|
|
test_transform = transforms.Compose([transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), normalize])
|
|
xshape = (1, 3, 224, 224)
|
|
else:
|
|
raise TypeError("Unknow dataset : {:}".format(name))
|
|
|
|
if name == 'cifar10':
|
|
train_data = dset.CIFAR10 (root, train=True , transform=train_transform, download=True)
|
|
test_data = dset.CIFAR10 (root, train=False, transform=test_transform , download=True)
|
|
assert len(train_data) == 50000 and len(test_data) == 10000
|
|
elif name == 'cifar100':
|
|
train_data = dset.CIFAR100(root, train=True , transform=train_transform, download=True)
|
|
test_data = dset.CIFAR100(root, train=False, transform=test_transform , download=True)
|
|
assert len(train_data) == 50000 and len(test_data) == 10000
|
|
elif name.startswith('imagenet-1k'):
|
|
train_data = dset.ImageFolder(osp.join(root, 'train'), train_transform)
|
|
test_data = dset.ImageFolder(osp.join(root, 'val'), test_transform)
|
|
assert len(train_data) == 1281167 and len(test_data) == 50000, 'invalid number of images : {:} & {:} vs {:} & {:}'.format(len(train_data), len(test_data), 1281167, 50000)
|
|
elif name == 'ImageNet16':
|
|
train_data = ImageNet16(root, True , train_transform)
|
|
test_data = ImageNet16(root, False, test_transform)
|
|
assert len(train_data) == 1281167 and len(test_data) == 50000
|
|
elif name == 'ImageNet16-120':
|
|
train_data = ImageNet16(root, True , train_transform, 120)
|
|
test_data = ImageNet16(root, False, test_transform , 120)
|
|
assert len(train_data) == 151700 and len(test_data) == 6000
|
|
elif name == 'ImageNet16-150':
|
|
train_data = ImageNet16(root, True , train_transform, 150)
|
|
test_data = ImageNet16(root, False, test_transform , 150)
|
|
assert len(train_data) == 190272 and len(test_data) == 7500
|
|
elif name == 'ImageNet16-200':
|
|
train_data = ImageNet16(root, True , train_transform, 200)
|
|
test_data = ImageNet16(root, False, test_transform , 200)
|
|
assert len(train_data) == 254775 and len(test_data) == 10000
|
|
else: raise TypeError("Unknow dataset : {:}".format(name))
|
|
|
|
class_num = Dataset2Class[name]
|
|
return train_data, test_data, xshape, class_num
|
|
|
|
#if __name__ == '__main__':
|
|
# train_data, test_data, xshape, class_num = dataset = get_datasets('cifar10', '/data02/dongxuanyi/.torch/cifar.python/', -1)
|
|
# import pdb; pdb.set_trace()
|