59 lines
2.2 KiB
Python
59 lines
2.2 KiB
Python
#####################################################
|
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
|
#####################################################
|
|
from typing import List, Text, Any
|
|
import torch.nn as nn
|
|
from models.cell_operations import ResNetBasicblock
|
|
from models.cell_infers.cells import InferCell
|
|
|
|
|
|
class DynamicShapeTinyNet(nn.Module):
|
|
|
|
def __init__(self, channels: List[int], genotype: Any, num_classes: int):
|
|
super(DynamicShapeTinyNet, self).__init__()
|
|
self._channels = channels
|
|
if len(channels) % 3 != 2:
|
|
raise ValueError('invalid number of layers : {:}'.format(len(channels)))
|
|
self._num_stage = N = len(channels) // 3
|
|
|
|
self.stem = nn.Sequential(
|
|
nn.Conv2d(3, channels[0], kernel_size=3, padding=1, bias=False),
|
|
nn.BatchNorm2d(channels[0]))
|
|
|
|
# layer_channels = [C ] * N + [C*2 ] + [C*2 ] * N + [C*4 ] + [C*4 ] * N
|
|
layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N
|
|
|
|
c_prev = channels[0]
|
|
self.cells = nn.ModuleList()
|
|
for index, (c_curr, reduction) in enumerate(zip(channels, layer_reductions)):
|
|
if reduction : cell = ResNetBasicblock(c_prev, c_curr, 2, True)
|
|
else : cell = InferCell(genotype, c_prev, c_curr, 1)
|
|
self.cells.append( cell )
|
|
c_prev = cell.out_dim
|
|
self._num_layer = len(self.cells)
|
|
|
|
self.lastact = nn.Sequential(nn.BatchNorm2d(c_prev), nn.ReLU(inplace=True))
|
|
self.global_pooling = nn.AdaptiveAvgPool2d(1)
|
|
self.classifier = nn.Linear(c_prev, num_classes)
|
|
|
|
def get_message(self) -> Text:
|
|
string = self.extra_repr()
|
|
for i, cell in enumerate(self.cells):
|
|
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
|
|
return string
|
|
|
|
def extra_repr(self):
|
|
return ('{name}(C={_channels}, N={_num_stage}, L={_num_layer})'.format(name=self.__class__.__name__, **self.__dict__))
|
|
|
|
def forward(self, inputs):
|
|
feature = self.stem(inputs)
|
|
for i, cell in enumerate(self.cells):
|
|
feature = cell(feature)
|
|
|
|
out = self.lastact(feature)
|
|
out = self.global_pooling( out )
|
|
out = out.view(out.size(0), -1)
|
|
logits = self.classifier(out)
|
|
|
|
return out, logits
|