cotracker/cotracker/evaluation/core/evaluator.py
2023-07-21 13:43:31 -07:00

257 lines
9.2 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from collections import defaultdict
import os
from typing import Optional
import torch
from tqdm import tqdm
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from cotracker.datasets.utils import dataclass_to_cuda_
from cotracker.utils.visualizer import Visualizer
from cotracker.models.core.model_utils import reduce_masked_mean
from cotracker.evaluation.core.eval_utils import compute_tapvid_metrics
import logging
class Evaluator:
"""
A class defining the CoTracker evaluator.
"""
def __init__(self, exp_dir) -> None:
# Visualization
self.exp_dir = exp_dir
os.makedirs(exp_dir, exist_ok=True)
self.visualization_filepaths = defaultdict(lambda: defaultdict(list))
self.visualize_dir = os.path.join(exp_dir, "visualisations")
def compute_metrics(self, metrics, sample, pred_trajectory, dataset_name):
if isinstance(pred_trajectory, tuple):
pred_trajectory, pred_visibility = pred_trajectory
else:
pred_visibility = None
if dataset_name == "badja":
sample.segmentation = (sample.segmentation > 0).float()
*_, N, _ = sample.trajectory.shape
accs = []
accs_3px = []
for s1 in range(1, sample.video.shape[1]): # target frame
for n in range(N):
vis = sample.visibility[0, s1, n]
if vis > 0:
coord_e = pred_trajectory[0, s1, n] # 2
coord_g = sample.trajectory[0, s1, n] # 2
dist = torch.sqrt(torch.sum((coord_e - coord_g) ** 2, dim=0))
area = torch.sum(sample.segmentation[0, s1])
# print_('0.2*sqrt(area)', 0.2*torch.sqrt(area))
thr = 0.2 * torch.sqrt(area)
# correct =
accs.append((dist < thr).float())
# print('thr',thr)
accs_3px.append((dist < 3.0).float())
res = torch.mean(torch.stack(accs)) * 100.0
res_3px = torch.mean(torch.stack(accs_3px)) * 100.0
metrics[sample.seq_name[0]] = res.item()
metrics[sample.seq_name[0] + "_accuracy"] = res_3px.item()
print(metrics)
print(
"avg", np.mean([v for k, v in metrics.items() if "accuracy" not in k])
)
print(
"avg acc 3px",
np.mean([v for k, v in metrics.items() if "accuracy" in k]),
)
elif dataset_name == "fastcapture" or ("kubric" in dataset_name):
*_, N, _ = sample.trajectory.shape
accs = []
for s1 in range(1, sample.video.shape[1]): # target frame
for n in range(N):
vis = sample.visibility[0, s1, n]
if vis > 0:
coord_e = pred_trajectory[0, s1, n] # 2
coord_g = sample.trajectory[0, s1, n] # 2
dist = torch.sqrt(torch.sum((coord_e - coord_g) ** 2, dim=0))
thr = 3
correct = (dist < thr).float()
accs.append(correct)
res = torch.mean(torch.stack(accs)) * 100.0
metrics[sample.seq_name[0] + "_accuracy"] = res.item()
print(metrics)
print("avg", np.mean([v for v in metrics.values()]))
elif "tapvid" in dataset_name:
B, T, N, D = sample.trajectory.shape
traj = sample.trajectory.clone()
thr = 0.9
if pred_visibility is None:
logging.warning("visibility is NONE")
pred_visibility = torch.zeros_like(sample.visibility)
if not pred_visibility.dtype == torch.bool:
pred_visibility = pred_visibility > thr
# pred_trajectory
query_points = sample.query_points.clone().cpu().numpy()
pred_visibility = pred_visibility[:, :, :N]
pred_trajectory = pred_trajectory[:, :, :N]
gt_tracks = traj.permute(0, 2, 1, 3).cpu().numpy()
gt_occluded = (
torch.logical_not(sample.visibility.clone().permute(0, 2, 1))
.cpu()
.numpy()
)
pred_occluded = (
torch.logical_not(pred_visibility.clone().permute(0, 2, 1))
.cpu()
.numpy()
)
pred_tracks = pred_trajectory.permute(0, 2, 1, 3).cpu().numpy()
out_metrics = compute_tapvid_metrics(
query_points,
gt_occluded,
gt_tracks,
pred_occluded,
pred_tracks,
query_mode="strided" if "strided" in dataset_name else "first",
)
metrics[sample.seq_name[0]] = out_metrics
for metric_name in out_metrics.keys():
if "avg" not in metrics:
metrics["avg"] = {}
metrics["avg"][metric_name] = np.mean(
[v[metric_name] for k, v in metrics.items() if k != "avg"]
)
logging.info(f"Metrics: {out_metrics}")
logging.info(f"avg: {metrics['avg']}")
print("metrics", out_metrics)
print("avg", metrics["avg"])
else:
rgbs = sample.video
trajs_g = sample.trajectory
valids = sample.valid
vis_g = sample.visibility
B, S, C, H, W = rgbs.shape
assert C == 3
B, S, N, D = trajs_g.shape
assert torch.sum(valids) == B * S * N
vis_g = (torch.sum(vis_g, dim=1, keepdim=True) >= 4).float().repeat(1, S, 1)
ate = torch.norm(pred_trajectory - trajs_g, dim=-1) # B, S, N
metrics["things_all"] = reduce_masked_mean(ate, valids).item()
metrics["things_vis"] = reduce_masked_mean(ate, valids * vis_g).item()
metrics["things_occ"] = reduce_masked_mean(
ate, valids * (1.0 - vis_g)
).item()
@torch.no_grad()
def evaluate_sequence(
self,
model,
test_dataloader: torch.utils.data.DataLoader,
dataset_name: str,
train_mode=False,
writer: Optional[SummaryWriter] = None,
step: Optional[int] = 0,
):
metrics = {}
vis = Visualizer(
save_dir=self.exp_dir,
fps=7,
)
for ind, sample in enumerate(tqdm(test_dataloader)):
if isinstance(sample, tuple):
sample, gotit = sample
if not all(gotit):
print("batch is None")
continue
if torch.cuda.is_available():
dataclass_to_cuda_(sample)
device = torch.device("cuda")
else:
device = torch.device("cpu")
if (
not train_mode
and hasattr(model, "sequence_len")
and (sample.visibility[:, : model.sequence_len].sum() == 0)
):
print(f"skipping batch {ind}")
continue
if "tapvid" in dataset_name:
queries = sample.query_points.clone().float()
queries = torch.stack(
[
queries[:, :, 0],
queries[:, :, 2],
queries[:, :, 1],
],
dim=2,
).to(device)
else:
queries = torch.cat(
[
torch.zeros_like(sample.trajectory[:, 0, :, :1]),
sample.trajectory[:, 0],
],
dim=2,
).to(device)
pred_tracks = model(sample.video, queries)
if "strided" in dataset_name:
inv_video = sample.video.flip(1).clone()
inv_queries = queries.clone()
inv_queries[:, :, 0] = inv_video.shape[1] - inv_queries[:, :, 0] - 1
pred_trj, pred_vsb = pred_tracks
inv_pred_trj, inv_pred_vsb = model(inv_video, inv_queries)
inv_pred_trj = inv_pred_trj.flip(1)
inv_pred_vsb = inv_pred_vsb.flip(1)
mask = pred_trj == 0
pred_trj[mask] = inv_pred_trj[mask]
pred_vsb[mask[:, :, :, 0]] = inv_pred_vsb[mask[:, :, :, 0]]
pred_tracks = pred_trj, pred_vsb
if dataset_name == "badja" or dataset_name == "fastcapture":
seq_name = sample.seq_name[0]
else:
seq_name = str(ind)
vis.visualize(
sample.video,
pred_tracks[0] if isinstance(pred_tracks, tuple) else pred_tracks,
filename=dataset_name + "_" + seq_name,
writer=writer,
step=step,
)
self.compute_metrics(metrics, sample, pred_tracks, dataset_name)
return metrics